Non-Markovian quantum dynamics: correlated projection superoperators and Hilbert space averaging.

The time-convolutionless (TCL) projection operator technique allows a systematic analysis of the non-Markovian quantum dynamics of open systems. We present a class of projection superoperators that project the states of the total system onto certain correlated system-environment states. It is shown that the application of the TCL technique to this class of correlated superoperators enables the nonperturbative treatment of the dynamics of system-environment models for which the standard approach fails in any finite order of the coupling strength. We demonstrate further that the correlated superoperators correspond to the idea of a best guess of conditional quantum expectations, which is determined by a suitable Hilbert-space average. The general approach is illustrated by means of the model of a spin that interacts through randomly distributed couplings with a finite reservoir consisting of two energy bands. Extensive numerical simulations of the full Schrödinger equation of the model reveal the power and efficiency of the method.

[1]  Jochen Gemmer,et al.  Thermalization of quantum systems by finite baths , 2006 .

[2]  A. Royer Cumulant Expansions and Pressure Broadening as an Example of Relaxation , 1972 .

[3]  I. Stamatescu,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .

[4]  T. Arimitsu,et al.  Expansion Formulas in Nonequilibrium Statistical Mechanics , 1980 .

[5]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[6]  J. Gemmer,et al.  9 Quantum Thermodynamic Equilibrium , 2004 .

[7]  Ryszard Horodecki,et al.  Quantum Information , 2001, Acta Physica Polonica A.

[8]  From pure Schrödingerian to statistical dynamics , 2005, quant-ph/0508194.

[9]  M. Esposito,et al.  Quantum master equation for a system influencing its environment. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Non-Markovian dynamics in a spin star system: Exact solution and approximation techniques , 2004, quant-ph/0401051.

[11]  Andrzej Kossakowski,et al.  Properties of Quantum Markovian Master Equations , 1978 .

[12]  M. Despósito,et al.  Memory effects in the spin relaxation within and without rotating wave approximation , 1996 .

[13]  Heinz-Peter Breuer Genuine quantum trajectories for non-Markovian processes , 2004 .

[14]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[15]  Distribution of local entropy in the Hilbert space of bi-partite quantum systems: origin of Jaynes' principle , 2002, quant-ph/0201136.

[16]  N. G. Van Kampen,et al.  A cumulant expansion for stochastic linear differential equations. I , 1974 .

[17]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[18]  F. Shibata,et al.  Time-convolutionless projection operator formalism for elimination of fast variables. Applications to Brownian motion , 1979 .

[19]  H. Grabert,et al.  Projection Operator Techniques in Nonequilibrium Statistical Mechanics , 1982 .

[20]  Completely positive post-Markovian master equation via a measurement approach , 2004, quant-ph/0404077.

[21]  Ryogo Kubo,et al.  STOCHASTIC LIOUVILLE EQUATIONS , 1963 .

[22]  Francesco Petruccione,et al.  The Time-Convolutionless Projection Operator Technique in the Quantum Theory of Dissipation and Decoherence , 2001 .

[23]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[24]  M. Toda,et al.  In: Statistical physics II , 1985 .

[25]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[26]  Barry M. Garraway,et al.  DECAY OF AN ATOM COUPLED STRONGLY TO A RESERVOIR , 1997 .

[27]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[28]  J. Gemmer,et al.  Quantum approach to a derivation of the second law of thermodynamics. , 2001, Physical review letters.

[29]  Yoshinori Takahashi,et al.  A generalized stochastic liouville equation. Non-Markovian versus memoryless master equations , 1977 .

[30]  U. Weiss Quantum Dissipative Systems , 1993 .

[31]  H. Spohn Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .

[32]  Dla Polski,et al.  EURO , 2004 .

[33]  A. Royer Combining projection superoperators and cumulant expansions in open quantum dynamics with initial correlations and fluctuating Hamiltonians and environments , 2003 .

[34]  Imamoglu Stochastic wave-function approach to non-Markovian systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[35]  B. M. Garraway,et al.  Nonperturbative decay of an atomic system in a cavity , 1997 .

[36]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[37]  F. Petruccione,et al.  Stochastic wave function method for non-markovian quantum master equations , 1999 .

[38]  S. Nakajima On Quantum Theory of Transport Phenomena Steady Diffusion , 1958 .

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[41]  R. Kubo Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .

[42]  J. L. Skinner,et al.  Non-Markovian population and phase relaxation and absorption lineshape for a two-level system strongly coupled to a harmonic quantum bath , 1993 .