High accuracy analysis of the lowest order H1-Galerkin mixed finite element method for nonlinear sine-Gordon equations
暂无分享,去创建一个
[1] Zhang,et al. ASYMPTOTIC ERROR EXPANSION AND DEFECT CORRECTION FOR SOBOLEV AND VISCOELASTICITY TYPE EQUATIONS , 1998 .
[2] Amiya K. Pani. An H 1 -Galerkin Mixed Finite Element Method for Parabolic Partial Differential Equations , 1998 .
[3] A. G. Bratsos. An explicit numerical scheme for the Sine‐Gordon equation in 2+1 dimensions , 2005 .
[4] Q. Xu,et al. An ADI Scheme for the Generalized Nonlinear Sine-Gordon Equation in Two Dimensions , 2007 .
[5] D. Shi,et al. Nonconforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes , 2009 .
[6] Yang Liu,et al. H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations , 2009, Appl. Math. Comput..
[7] Dongyang Shi,et al. Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations , 2013, Appl. Math. Comput..
[8] Dongyang Shi,et al. Highly efficient H1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation , 2014 .
[9] D. Shi,et al. Asymptotic Expansions and Extrapolations of H 1 -Galerkin Mixed Finite Element Method for Strongly Damped Wave Equation , 2015 .
[10] Dongyang Shi,et al. Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations , 2016, Comput. Math. Appl..