Twists and turns in ubiquitin‐like protein conjugation cascades

Post‐translational modification by ubiquitin‐like proteins (UBLs) is a predominant eukaryotic regulatory mechanism. The vast reach of this form of regulation extends to virtually all eukaryotic processes that involve proteins. UBL modifications play critical roles in controlling the cell cycle, transcription, DNA repair, stress responses, signaling, immunity, plant growth, embryogenesis, circadian rhythms, and a plethora of other pathways. UBLs dynamically modulate target protein properties including enzymatic activity, conformation, half‐life, subcellular localization, and intermolecular interactions. Moreover, the enzymatic process of UBL ligation to proteins is itself dynamic, with the UBL moving between multiple enzyme active sites and ultimately to a target. This review highlights our work on how the dynamic conformations of selected enzymes catalyzing UBL ligation help mediate this fascinating form of protein regulation.

[1]  M. Tyers,et al.  Structural Basis for Phosphodependent Substrate Selection and Orientation by the SCFCdc4 Ubiquitin Ligase , 2003, Cell.

[2]  S. Fang,et al.  RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Ghirlando,et al.  Mechanistic insights into active site-associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2 , 2009, Proceedings of the National Academy of Sciences.

[4]  Avram Hershko,et al.  The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture). , 2005, Angewandte Chemie.

[5]  B. Schulman,et al.  A RING E3–substrate complex poised for ubiquitin-like protein transfer: structural insights into cullin-RING ligases , 2011, Nature Structural &Molecular Biology.

[6]  A. Haas,et al.  The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. , 1982, The Journal of biological chemistry.

[7]  J Wade Harper,et al.  Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. , 2009, Molecular cell.

[8]  S. Elledge,et al.  Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. , 1999, Science.

[9]  Mike Tyers,et al.  Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor , 2008, Proceedings of the National Academy of Sciences.

[10]  J. Holton,et al.  Basis for a ubiquitin-like protein thioester switch toggling E1–E2 affinity , 2007, Nature.

[11]  A. Haas,et al.  Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. , 1987, The Journal of biological chemistry.

[12]  Yien Che Tsai,et al.  Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. , 2009, Molecular cell.

[13]  J Wade Harper,et al.  Constructing and decoding unconventional ubiquitin chains , 2011, Nature Structural &Molecular Biology.

[14]  Zhijian J. Chen,et al.  Nonproteolytic functions of ubiquitin in cell signaling. , 2009, Molecular cell.

[15]  Linda Hicke,et al.  Ubiquitin-binding domains , 2005, Nature Reviews Molecular Cell Biology.

[16]  M. Goebl,et al.  The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. , 1988, Science.

[17]  Yigong Shi,et al.  Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. , 2009, Molecular cell.

[18]  A. Varshavsky,et al.  The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses , 1987, Cell.

[19]  A. Ciechanover Intracellular protein degradation: from a vague idea, through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting (Nobel lecture). , 2005, Angewandte Chemie.

[20]  A. Haas,et al.  Activation of ubiquitin and ubiquitin-like proteins. , 2010, Sub-cellular biochemistry.

[21]  Brian Kuhlman,et al.  E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer , 2005, Nature Structural &Molecular Biology.

[22]  Anjanabha Saha,et al.  Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation , 2008, Molecular cell.

[23]  Alexander Varshavsky,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.

[24]  T. Gillette,et al.  Proteasomes: Machines for All Reasons , 2007, Cell.

[25]  A Ciechanover,et al.  Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Christine Yu,et al.  Ubiquitin Chain Editing Revealed by Polyubiquitin Linkage-Specific Antibodies , 2008, Cell.

[27]  David W. Miller,et al.  A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8 , 2004, Nature Structural &Molecular Biology.

[28]  M. Scheffner,et al.  A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Y. Xiong,et al.  The CUL1 C-Terminal Sequence and ROC1 Are Required for Efficient Nuclear Accumulation, NEDD8 Modification, and Ubiquitin Ligase Activity of CUL1 , 2000, Molecular and Cellular Biology.

[30]  Timothy Cardozo,et al.  Systematic analysis and nomenclature of mammalian F-box proteins. , 2004, Genes & development.

[31]  I. A. Rose,et al.  Functional heterogeneity of ubiquitin carrier proteins. , 1985, Progress in clinical and biological research.

[32]  Z. Ronai,et al.  Recruitment of a ROC1–CUL1 Ubiquitin Ligase by Skp1 and HOS to Catalyze the Ubiquitination of IκBα , 1999 .

[33]  C. Bugg,et al.  Structure of ubiquitin refined at 1.8 A resolution. , 1987, Journal of molecular biology.

[34]  Mike Tyers,et al.  A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. , 2004, Biochimica et biophysica acta.

[35]  Raymond J. Deshaies,et al.  Mechanism of Lysine 48-Linked Ubiquitin-Chain Synthesis by the Cullin-RING Ubiquitin-Ligase Complex SCF-Cdc34 , 2005, Cell.

[36]  Alexander Varshavsky,et al.  The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme , 1987, Nature.

[37]  T. Hunter,et al.  The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. , 1999, Science.

[38]  Mike Tyers,et al.  Cdc53 Targets Phosphorylated G1 Cyclins for Degradation by the Ubiquitin Proteolytic Pathway , 1996, Cell.

[39]  S. Jentsch,et al.  A novel protein modification pathway related to the ubiquitin system , 1998, The EMBO journal.

[40]  Nurhan Özlü,et al.  The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae , 2005, Nature.

[41]  G. Blobel,et al.  A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex , 1996, The Journal of cell biology.

[42]  B. Schulman,et al.  Crystal Structure of UBA2ufd-Ubc9: Insights into E1-E2 Interactions in Sumo Pathways , 2010, PloS one.

[43]  R. Deshaies,et al.  A Complex of Cdc4p, Skp1p, and Cdc53p/Cullin Catalyzes Ubiquitination of the Phosphorylated CDK Inhibitor Sic1p , 1997, Cell.

[44]  Jidong Liu,et al.  Structure of the Cand1-Cul1-Roc1 Complex Reveals Regulatory Mechanisms for the Assembly of the Multisubunit Cullin-Dependent Ubiquitin Ligases , 2004, Cell.

[45]  P. Howley,et al.  Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. , 1999, Science.

[46]  B. Schulman,et al.  Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8 , 2003, Nature.

[47]  A. Haas,et al.  The resolution and characterization of putative ubiquitin carrier protein isozymes from rabbit reticulocytes. , 1988, The Journal of biological chemistry.

[48]  A. Varshavsky,et al.  Ubiquitin as a degradation signal. , 1992, The EMBO journal.

[49]  A. Varshavsky Discovery of Cellular Regulation by Protein Degradation , 2008, Journal of Biological Chemistry.

[50]  B. Schulman,et al.  A dual E3 mechanism for Rub1 ligation to Cdc53. , 2010, Molecular cell.

[51]  A. Haas,et al.  Conservation in the Mechanism of Nedd8 Activation by the Human AppBp1-Uba3 Heterodimer* , 2003, Journal of Biological Chemistry.

[52]  D. Rotin,et al.  Physiological functions of the HECT family of ubiquitin ligases , 2009, Nature Reviews Molecular Cell Biology.

[53]  C. Lima,et al.  Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. , 2007, Journal of molecular biology.

[54]  M. MacCoss,et al.  Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery , 2006, Nature.

[55]  A. Hershko,et al.  Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. , 1982, The Journal of biological chemistry.

[56]  A. Ciechanover,et al.  "Covalent affinity" purification of ubiquitin-activating enzyme. , 1982, The Journal of biological chemistry.

[57]  Robert C Piper,et al.  Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. , 2009, Molecular cell.

[58]  J Wade Harper,et al.  Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. , 2007, Molecular cell.

[59]  Alexander Varshavsky,et al.  Regulated protein degradation. , 2005, Trends in biochemical sciences.

[60]  Soichi Wakatsuki,et al.  Ubiquitin-binding domains — from structures to functions , 2009, Nature Reviews Molecular Cell Biology.

[61]  Ping Li,et al.  Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. , 2010, Molecular cell.

[62]  A. Hershko,et al.  Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates. , 1985, Biochemical and biophysical research communications.

[63]  M. Ivan,et al.  Structure of an HIF-1α-pVHL Complex: Hydroxyproline Recognition in Signaling , 2002, Science.

[64]  Brian Kuhlman,et al.  Rapid E2-E3 Assembly and Disassembly Enable Processive Ubiquitylation of Cullin-RING Ubiquitin Ligase Substrates , 2009, Cell.

[65]  M. Roussel,et al.  E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. , 2009, Molecular cell.

[66]  Timothy Cardozo,et al.  The SCF ubiquitin ligase: insights into a molecular machine , 2004, Nature Reviews Molecular Cell Biology.

[67]  D. Fushman,et al.  Polyubiquitin chains: polymeric protein signals. , 2004, Current opinion in chemical biology.

[68]  F. Melchior,et al.  A Small Ubiquitin-Related Polypeptide Involved in Targeting RanGAP1 to Nuclear Pore Complex Protein RanBP2 , 1997, Cell.

[69]  A. Haas,et al.  Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. , 1980, The Journal of biological chemistry.

[70]  M. Pagano,et al.  Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. , 2005, Molecular cell.

[71]  R. Nussinov,et al.  Dynamic allostery: linkers are not merely flexible. , 2011, Structure.

[72]  B. Dye,et al.  Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. , 2007, Annual review of biophysics and biomolecular structure.

[73]  J. Huibregtse,et al.  Regulation of catalytic activities of HECT ubiquitin ligases. , 2007, Biochemical and biophysical research communications.

[74]  C. Pickart,et al.  Substrate properties of site-specific mutant ubiquitin protein (G76A) reveal unexpected mechanistic features of ubiquitin-activating enzyme (E1). , 1994, The Journal of biological chemistry.

[75]  E. Kipreos,et al.  Cullin-RING ubiquitin ligases: global regulation and activation cycles , 2008, Cell Division.

[76]  H. Kawasaki,et al.  A new NEDD8-ligating system for cullin-4A. , 1998, Genes & development.

[77]  Nadine H. Elowe,et al.  An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase , 2010, Nature Biotechnology.

[78]  J. Wade Harper,et al.  Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways , 2009, Nature Reviews Molecular Cell Biology.

[79]  R. Honda,et al.  Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1). , 2000, Biochemical and biophysical research communications.

[80]  A. Goldberg Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. , 2007, Biochemical Society transactions.

[81]  K Nasmyth,et al.  Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. , 1999, Genes & development.

[82]  M. Tyers,et al.  Dcn1 functions as a scaffold-type E3 ligase for cullin neddylation. , 2008, Molecular cell.

[83]  C. Hill,et al.  Proteasome activators. , 2011, Molecular cell.

[84]  S. Jentsch,et al.  Conjugation of the ubiquitin-like protein NEDD8 to cullin-2 is linked to von Hippel-Lindau tumor suppressor function. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Z. Ronai,et al.  Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. , 1999, Molecular cell.

[86]  Joseph P Noel,et al.  Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. , 2003, Molecular cell.

[87]  Derek S. Tan,et al.  Active site remodeling accompanies thioester bond formation in the SUMO E1 , 2009, Nature.

[88]  Yifan Cheng,et al.  Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. , 2008, Molecular cell.

[89]  A. Haas,et al.  Functional diversity among putative E2 isozymes in the mechanism of ubiquitin-histone ligation. , 1988, The Journal of biological chemistry.

[90]  Jesper V Olsen,et al.  Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation , 2007, The EMBO journal.

[91]  S. Elledge,et al.  Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. , 1999, Science.

[92]  A. Ciechanover,et al.  The NEDD8 Pathway Is Essential for SCFβ-TrCP-mediated Ubiquitination and Processing of the NF-κB Precursor p105* , 2002, The Journal of Biological Chemistry.

[93]  E. Lightcap,et al.  A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[94]  D. Finley,et al.  A proteasome for all occasions , 2007, FEBS letters.

[95]  Bhuvanesh Singh,et al.  SCCRO (DCUN1D1) Is an Essential Component of the E3 Complex for Neddylation* , 2008, Journal of Biological Chemistry.

[96]  R. Deshaies,et al.  The Acidic Tail of the Cdc34 Ubiquitin-conjugating Enzyme Functions in Both Binding to and Catalysis with Ubiquitin Ligase SCFCdc4 , 2009, The Journal of Biological Chemistry.

[97]  A. Varshavsky,et al.  The short-lived MAT alpha 2 transcriptional regulator is ubiquitinated in vivo. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[98]  H. Yasuda,et al.  Nedd8-modification of Cul1 is promoted by Roc1 as a Nedd8-E3 ligase and regulates its stability. , 2003, Biochemical and biophysical research communications.

[99]  Yigong Shi,et al.  Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. , 2009, Molecular cell.

[100]  R. Osman,et al.  Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1's C-terminal tail , 2008, Proceedings of the National Academy of Sciences.

[101]  E. Freed,et al.  Retrovirus budding. , 2004, Virus research.

[102]  I. A. Rose,et al.  Ubiquitin adenylate: structure and role in ubiquitin activation. , 1983, Biochemistry.

[103]  Geng Wu,et al.  Structure of a -TrCP1-Skp1--Catenin Complex , 2003 .

[104]  Ping Wang,et al.  Structure of a c-Cbl–UbcH7 Complex RING Domain Function in Ubiquitin-Protein Ligases , 2000, Cell.

[105]  Stephen J. Elledge,et al.  SKP1 Connects Cell Cycle Regulators to the Ubiquitin Proteolysis Machinery through a Novel Motif, the F-Box , 1996, Cell.

[106]  Takashi Yamane,et al.  Structural basis for the selection of glycosylated substrates by SCFFbs1 ubiquitin ligase , 2007, Proceedings of the National Academy of Sciences.

[107]  V. Schreiber,et al.  The expanding field of poly(ADP-ribosyl)ation reactions. ‘Protein Modifications: Beyond the Usual Suspects' Review Series , 2008, EMBO reports.

[108]  P. P. Di Fiore,et al.  Distinct monoubiquitin signals in receptor endocytosis. , 2003, Trends in biochemical sciences.

[109]  Y. Xiong,et al.  ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. , 1999, Molecular cell.

[110]  I. Rose Ubiquitin at Fox Chase (Nobel lecture). , 2005, Angewandte Chemie.

[111]  A. Haas,et al.  Protein Interactions within the N-end Rule Ubiquitin Ligation Pathway* , 2003, The Journal of Biological Chemistry.

[112]  Aaron Ciechanover,et al.  The HECT family of E3 ubiquitin ligases: multiple players in cancer development. , 2008, Cancer cell.

[113]  M. Estelle,et al.  Role of the Arabidopsis RING-H2 Protein RBX1 in RUB Modification and SCF Function Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003178. , 2002, The Plant Cell Online.

[114]  M. Roussel,et al.  Structural Dissection of a Gating Mechanism Preventing Misactivation of Ubiquitin by NEDD8’s E1 , 2008, Biochemistry.

[115]  D. Hoyt,et al.  A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. , 2006, Molecular cell.

[116]  Angus Chen,et al.  Conjugation of Nedd8 to CUL1 Enhances the Ability of the ROC1-CUL1 Complex to Promote Ubiquitin Polymerization* , 2000, The Journal of Biological Chemistry.

[117]  K. Wilkinson,et al.  A specific inhibitor of the ubiquitin activating enzyme: synthesis and characterization of adenosyl-phospho-ubiquitinol, a nonhydrolyzable ubiquitin adenylate analogue. , 1990, Biochemistry.

[118]  A. Varshavsky,et al.  In vivo degradation of a transcriptional regulator: the yeast alpha 2 repressor. , 1990, Cell.

[119]  Mike Tyers,et al.  F-Box Proteins Are Receptors that Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex , 1997, Cell.

[120]  D. Finley,et al.  Recognition and processing of ubiquitin-protein conjugates by the proteasome. , 2009, Annual review of biochemistry.

[121]  M. Tyers,et al.  Suprafacial Orientation of the SCFCdc4 Dimer Accommodates Multiple Geometries for Substrate Ubiquitination , 2007, Cell.

[122]  A. Hershko,et al.  A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. , 1978, Biochemical and biophysical research communications.

[123]  J. Hurley,et al.  Molecular mechanisms of ubiquitin-dependent membrane traffic. , 2011, Annual review of biophysics.

[124]  H. Suzuki,et al.  NEDD8 recruits E2‐ubiquitin to SCF E3 ligase , 2001, The EMBO journal.

[125]  S. Gygi,et al.  Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging , 2007, Nature.

[126]  Michal Sharon,et al.  Mechanism of auxin perception by the TIR1 ubiquitin ligase , 2007, Nature.

[127]  Z. Pan,et al.  Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. , 2010, Molecular cell.

[128]  Kazuhiro Iwai,et al.  Linear polyubiquitination: a new regulator of NF‐κB activation , 2009, EMBO reports.

[129]  Ivan Dikic,et al.  Atypical ubiquitin chains: new molecular signals , 2008, EMBO reports.

[130]  R. Conaway,et al.  The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. , 1999, Genes & development.

[131]  D. Ecker,et al.  A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. , 1989, Science.

[132]  Hermann Schindelin,et al.  Structural Insights into E1-Catalyzed Ubiquitin Activation and Transfer to Conjugating Enzymes , 2008, Cell.

[133]  V. Chau,et al.  Nedd8 Modification of Cul-1 Activates SCFβTrCP-Dependent Ubiquitination of IκBα , 2000, Molecular and Cellular Biology.

[134]  Stephen J. Elledge,et al.  Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex , 2000, Nature.

[135]  J. Holton,et al.  Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. , 2005, Molecular cell.

[136]  A. Ciechanover,et al.  The NEDD8 pathway is essential for SCF(beta -TrCP)-mediated ubiquitination and processing of the NF-kappa B precursor p105. , 2002, The Journal of biological chemistry.

[137]  S. Elledge,et al.  Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex , 2002, Nature.

[138]  Amanda Doucette,et al.  An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer , 2009, Nature.

[139]  Alexander Varshavsky,et al.  In vivo degradation of a transcriptional regulator: The yeast α2 repressor , 1990, Cell.

[140]  A. Ciechanover,et al.  Basic Medical Research Award. The ubiquitin system. , 2000, Nature medicine.

[141]  A. Ciechanover,et al.  Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85 , 1984, Cell.

[142]  A. Ciechanover,et al.  Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. , 1983, The Journal of biological chemistry.

[143]  Daniel C. Scott,et al.  Structural Insights into NEDD8 Activation of Cullin-RING Ligases: Conformational Control of Conjugation , 2008, Cell.

[144]  Peter G. Smith,et al.  Neddylation-induced conformational control regulates cullin RING ligase activity in vivo. , 2011, Journal of molecular biology.

[145]  Steven P Gygi,et al.  Certain Pairs of Ubiquitin-conjugating Enzymes (E2s) and Ubiquitin-Protein Ligases (E3s) Synthesize Nondegradable Forked Ubiquitin Chains Containing All Possible Isopeptide Linkages* , 2007, Journal of Biological Chemistry.

[146]  David W. Miller,et al.  The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. , 2003, Molecular cell.

[147]  A. Ciechanover,et al.  Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85 , 1984, Cell.

[148]  D. Komander The emerging complexity of protein ubiquitination. , 2009, Biochemical Society transactions.

[149]  C. Lima,et al.  Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1 , 2005, The EMBO journal.

[150]  W. Kaelin,et al.  Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. , 1999, Science.

[151]  S. Emr,et al.  Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I , 2001, Cell.

[152]  Geng Wu,et al.  Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. , 2003, Molecular cell.

[153]  M. Goebl,et al.  Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. , 1998, Genes & development.

[154]  P. Brzovic,et al.  E2–BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages , 2007, Nature Structural &Molecular Biology.

[155]  E. Yeh,et al.  Identification of the Activating and Conjugating Enzymes of the NEDD8 Conjugation Pathway* , 1999, The Journal of Biological Chemistry.

[156]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[157]  T. Mizushima,et al.  Structural basis of sugar-recognizing ubiquitin ligase , 2004, Nature Structural &Molecular Biology.

[158]  K. Hofmann,et al.  When ubiquitin meets ubiquitin receptors: a signalling connection , 2003, Nature Reviews Molecular Cell Biology.