Regularization networks for approximating multi-valued functions: learning ambiguous input-output mappings from examples
暂无分享,去创建一个
[1] Tomaso A. Poggio,et al. Learning of visual modules from examples: A framework for understanding adaptive visual performance , 1992, CVGIP Image Underst..
[2] Geoffrey E. Hinton,et al. Adaptive Mixtures of Local Experts , 1991, Neural Computation.
[3] T Poggio,et al. Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.
[4] Immo O. Kerner,et al. Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen , 1966 .
[5] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[6] R. Penrose. The emperor's new mind: concerning computers, minds, and the laws of physics , 1989 .
[7] Ferdinando A. Mussa-Ivaldi,et al. Networks that approximate vector-valued mappings , 1993, IEEE International Conference on Neural Networks.
[8] Tomaso Poggio,et al. Computational vision and regularization theory , 1985, Nature.
[9] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[10] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[11] F. Girosi,et al. Networks for approximation and learning , 1990, Proc. IEEE.