Dynamically controlled random lasing with colloidal titanium carbide MXene

Control of lasing properties through tailorable and dynamically tunable materials and reconfigurable compositions can augment the performance of random lasers for a wide range of applications. Here, a colloid of randomly dispersed weakly scattering single-layer titanium carbide (Ti3C2Tx) MXene flakes embedded within rhodamine 101 gain medium is experimentally shown to provide feedback for random lasing. Additionally, in contrast to previously reported random laser systems where the optical properties of scatterers are static, the relative permittivity of Ti3C2Tx MXene flakes can be varied under optical pumping due to the saturable absorption properties. Numerical simulations indicate that the observed nonlinear response of Ti3C2Tx MXene flakes enables dynamically tunable random lasing. Thus, pumping the Ti3C2Tx MXene flakes with a second optical source decreases the gain threshold required to obtain random lasing. Also, using numerical simulations, it is shown that the control over the intensity of the second pump enables tuning the field distribution of the random lasing modes. Considering the diversity of the MXenes family, the proposed MXene colloidal metamaterial design opens up a new avenue to advanced control of lasing properties for photonic applications.

[1]  Paras N. Prasad,et al.  Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications , 2020, Physics Reports.

[2]  Anirban Sarkar,et al.  Replica Symmetry Breaking in a Weakly Scattering Optofluidic Random Laser , 2020, Scientific Reports.

[3]  Han Zhang,et al.  MZI‐Based All‐Optical Modulator Using MXene Ti3C2Tx (T = F, O, or OH) Deposited Microfiber , 2019, Advanced Materials Technologies.

[4]  A. Kildishev,et al.  Time-domain dynamics of reverse saturable absorbers with application to plasmon-enhanced optical limiters , 2018, Nanophotonics.

[5]  A. Kildishev,et al.  Time-domain dynamics of saturation of absorption using multilevel atomic systems , 2018, Optical Materials Express.

[6]  N. Arnold,et al.  Exploring Time‐Resolved Multiphysics of Active Plasmonic Systems with Experiment‐Based Gain Models , 2018, Laser & Photonics Reviews.

[7]  Martti Kauranen,et al.  Beaming random lasers with soliton control , 2018, Nature Communications.

[8]  Y. Gogotsi,et al.  Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes , 2018, Advanced materials.

[9]  D. Fan,et al.  Broadband Nonlinear Photonics in Few‐Layer MXene Ti3C2Tx (T = F, O, or OH) , 2018 .

[10]  Vladimir M. Shalaev,et al.  Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene) , 2018 .

[11]  Kwang-Ho Choi,et al.  Anderson light localization in biological nanostructures of native silk , 2018, Nature Communications.

[12]  P. K. Roy,et al.  Wrinkled 2D Materials: A Versatile Platform for Low‐Threshold Stretchable Random Lasers , 2017, Advanced materials.

[13]  Young In Jhon,et al.  Metallic MXene Saturable Absorber for Femtosecond Mode‐Locked Lasers , 2017, Advanced materials.

[14]  Y. Gogotsi,et al.  Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate , 2017 .

[15]  Peng Wang,et al.  MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. , 2017, ACS nano.

[16]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[17]  Y. Gogotsi,et al.  One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS , 2016, Scientific Reports.

[18]  A. Marini,et al.  Graphene-Based Active Random Metamaterials for Cavity-Free Lasing. , 2016, Physical review letters.

[19]  Vladimir M. Shalaev,et al.  Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials. , 2016, Nano letters.

[20]  Yury Gogotsi,et al.  NMR reveals the surface functionalisation of Ti3C2 MXene. , 2016, Physical chemistry chemical physics : PCCP.

[21]  Amos Martinez,et al.  Optical modulators with 2D layered materials , 2016, Nature Photonics.

[22]  Chenhui Yang,et al.  A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2 , 2015 .

[23]  Yury Gogotsi,et al.  Amine‐Assisted Delamination of Nb2C MXene for Li‐Ion Energy Storage Devices , 2015, Advanced materials.

[24]  Y. Gogotsi,et al.  Synthesis of two-dimensional materials by selective extraction. , 2015, Accounts of chemical research.

[25]  Li Li,et al.  Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. , 2014, Nanoscale.

[26]  J. Mørk,et al.  Random nanolasing in the Anderson localized regime. , 2014, Nature nanotechnology.

[27]  P. Sebbah,et al.  Adaptive pumping for spectral control of random lasers , 2014 .

[28]  Dionyz Pogany,et al.  Pump-controlled directional light emission from random lasers. , 2013, Physical review letters.

[29]  A. M. van der Zande,et al.  Regenerative oscillation and four-wave mixing in graphene optoelectronics , 2012, Nature Photonics.

[30]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[31]  Brandon Redding,et al.  Speckle-free laser imaging using random laser illumination , 2011, Nature Photonics.

[32]  Claudio Conti,et al.  The mode-locking transition of random lasers , 2011, 1304.3652.

[33]  Jan Trieschmann,et al.  Experimental retrieval of the kinetic parameters of a dye in a solid film. , 2011, Optics express.

[34]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[35]  Zhipei Sun,et al.  A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser , 2010 .

[36]  Zhenhua Ni,et al.  Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers , 2009, 0910.5820.

[37]  Koji Fujita,et al.  Coherent random lasers in weakly scattering polymer films containing silver nanoparticles , 2009 .

[38]  Xiangyang Ma,et al.  Electrically pumped ZnO film ultraviolet random lasers on silicon substrate , 2007 .

[39]  Diederik S. Wiersma,et al.  Chaotic behavior of a random laser with static disorder , 2007 .

[40]  X. Wu,et al.  Random lasing in weakly scattering systems , 2006, physics/0606105.

[41]  A. Genack,et al.  Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization. , 2005, Physical review letters.

[42]  Zeev Valy Vardeny,et al.  Organic random lasers in the weak-scattering regime , 2005 .

[43]  Z. Valy Vardeny,et al.  Random lasing in human tissues , 2004 .