High yield design of mesoporous tetrakaidecahedron-like α-Fe2O3 nanocrystals with enhanced supercapacitive performance

[1]  Rui Wang,et al.  Metal/Metal Oxide Nanoparticles-Composited Porous Carbon for High-Performance Supercapacitors , 2021 .

[2]  Haiyan Zhang,et al.  Fe2O3 nanowire arrays on Ni-coated yarns as excellent electrodes for high performance wearable yarn-supercapacitor , 2020 .

[3]  E. Xie,et al.  Fe2O3 Nanoparticles Anchored on the Ti3C2Tx MXene Paper for Flexible Supercapacitors with Ultrahigh Volumetric Capacitance. , 2020, ACS applied materials & interfaces.

[4]  L. Xing,et al.  α-Fe2O3/rGO nanospindles as electrode materials for supercapacitors with long cycle life , 2018, Materials Research Bulletin.

[5]  Ming Li,et al.  Flower-like Fe2O3@multiple graphene aerogel for high-performance supercapacitors , 2018 .

[6]  Jian Zhao,et al.  A High‐Energy Density Asymmetric Supercapacitor Based on Fe2O3 Nanoneedle Arrays and NiCo2O4/Ni(OH)2 Hybrid Nanosheet Arrays Grown on SiC Nanowire Networks as Free‐Standing Advanced Electrodes , 2018 .

[7]  Jimin Xie,et al.  Nitrogen/sulfur co-doped graphene networks uniformly coupled N-Fe2O3 nanoparticles achieving enhanced supercapacitor performance , 2018 .

[8]  L. Borchardt,et al.  Nanocasting in ball mills – combining ultra-hydrophilicity and ordered mesoporosity in carbon materials , 2018 .

[9]  B. J. Lokhande,et al.  A robust solvent deficient route synthesis of mesoporous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance , 2017 .

[10]  Songjun Li,et al.  One-pot hydrothermal fabrication of α-Fe2O3@C nanocomposites for electrochemical energy storage , 2017, Journal of Energy Chemistry.

[11]  J. Hsu,et al.  Synthesis of Fe2O3 nanorods/silver nanowires on coffee filter as low-cost and efficient electrodes for supercapacitors , 2017 .

[12]  Yogesh Kumar K,et al.  Synthesis of polyaniline/α-Fe2O3 nanocomposite electrode material for supercapacitor applications , 2017 .

[13]  G. Lu,et al.  Reduced graphene oxide/α-Fe2O3 composite nanofibers for application in gas sensors , 2017 .

[14]  A. Balducci,et al.  Supercapacitors: Porous materials get energized. , 2017, Nature materials.

[15]  Huan Pang,et al.  MoS2‐Based Nanocomposites for Electrochemical Energy Storage , 2016, Advanced science.

[16]  Wei Liu,et al.  Preparation and electrochemical properties of Fe2O3/reduced graphene oxide aerogel (Fe2O3/rGOA) composites for supercapacitors , 2016 .

[17]  Minshen Zhu,et al.  Multifunctional Energy Storage and Conversion Devices , 2016, Advanced materials.

[18]  Q. Jiang,et al.  High Efficient Photo-Fenton Catalyst of α-Fe2O3/MoS2 Hierarchical Nanoheterostructures: Reutilization for Supercapacitors , 2016, Scientific Reports.

[19]  S. Mane,et al.  Enhanced specific capacitance and supercapacitive properties of polyaniline–iron oxide (PANI–Fe2O3) composite electrode material , 2016, Journal of Materials Science.

[20]  Bruce Dunn,et al.  Efficient storage mechanisms for building better supercapacitors , 2016, Nature Energy.

[21]  Anqiang Pan,et al.  Multi-shelled α-Fe2O3 microspheres for high-rate supercapacitors , 2016, Science China Materials.

[22]  Qingliang Liao,et al.  Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. , 2016, Journal of colloid and interface science.

[23]  Hongying Quan,et al.  One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application , 2016 .

[24]  Feng Chen,et al.  Template-free formation of spindle-like α-Fe2O3 microstructures by hydrothermal reduction , 2015 .

[25]  C. Huang,et al.  Aqueous-solution synthesis of uniform PbS nanocubes and their optical properties , 2015, Journal of Nanoparticle Research.

[26]  Jong‐Sung Yu,et al.  Cube-like α-Fe2O3 supported on ordered multimodal porous carbon as high performance electrode material for supercapacitors. , 2014, ChemSusChem.

[27]  C. Cao,et al.  Enhanced electrochemical performance of ball milled CoO for supercapacitor applications , 2014 .

[28]  H. Fei,et al.  Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors. , 2014, ACS nano.

[29]  Gang Wang,et al.  Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor , 2014 .

[30]  N. Munichandraiah,et al.  Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material , 2014, Journal of Solid State Electrochemistry.

[31]  J. Banfield,et al.  Aggregation-induced growth and transformation of β-FeOOH nanorods to micron-sized α-Fe2O3 spindles , 2014 .

[32]  J. Yin,et al.  Fe2O3 sheets grown on nickel foam as electrode material for electrochemical capacitors , 2014 .

[33]  Yong Ding,et al.  Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. , 2014, Nano letters.

[34]  Jun Yan,et al.  Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials. , 2013, ACS nano.

[35]  D. Bhattacharjya,et al.  1-Dimensional porous α-Fe2O3 nanorods as high performance electrode material for supercapacitors , 2013 .

[36]  R. Mane,et al.  Concentration-dependent electrochemical supercapacitive performance of Fe2O3 , 2013 .

[37]  Zhian Zhang,et al.  Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage , 2011 .

[38]  Qihua Wang,et al.  Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes , 2011, Nanotechnology.

[39]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[40]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[41]  Yitai Qian,et al.  Synthesis, Characterization, and Luminescence Properties of Uniform Ln3+-Doped YF3 Nanospindles , 2007 .

[42]  J. Holdren,et al.  Energy and Sustainability , 2007, Science.

[43]  R. L. Penn,et al.  Kinetics of Oriented Aggregation , 2004 .

[44]  Feng Huang,et al.  Two-Stage Crystal-Growth Kinetics Observed during Hydrothermal Coarsening of Nanocrystalline ZnS , 2003 .

[45]  Xin Guo,et al.  MOF-derived porous hollow α-Fe2O3 microboxes modified by silver nanoclusters for enhanced pseudocapacitive storage , 2019, Applied Surface Science.

[46]  Y. Tong,et al.  Oxygen‐Deficient Hematite Nanorods as High‐Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors , 2014, Advanced materials.

[47]  N. Munichandraiah,et al.  Synthesis and characterization of porous flowerlike alpha-Fe2O3 nanostructures for supercapacitor application , 2013 .