Spanning the isogeny class of a power of an elliptic curve
暂无分享,去创建一个
Christophe Ritzenthaler | Markus Kirschmer | Fabien Narbonne | Damien Robert | C. Ritzenthaler | Damien Robert | M. Kirschmer | Fabien Narbonne
[1] Jun-ichi Igusa. Schottky’s Invariant and Quadratic Forms , 1981 .
[2] J. Igusa,et al. Modular Forms and Projective Invariants , 1967 .
[3] J. Stix,et al. Categories of abelian varieties over finite fields, I: Abelian varieties over p , 2015, 1501.02446.
[4] Kenji Ueno,et al. Principally polarized abelian variaties dimension two or three are Jacobian varieties , 1973 .
[5] Alexey Zaytsev. Optimal curves of low genus over finite fields , 2016, Finite Fields Their Appl..
[6] Ching-Li Chai,et al. Siegel Moduli Schemes and Their Compactifications over ℂ , 1986 .
[7] Serge Lang,et al. Abelian varieties , 1983 .
[8] D. Mumford,et al. On the equations defining abelian varieties. II , 1967 .
[9] D. Mumford. Tata Lectures on Theta I , 1982 .
[10] Tse-Chung Yang,et al. Supersingular abelian surfaces and Eichler’s class number formula , 2014, Asian Journal of Mathematics.
[11] Tanja Lange,et al. Handbook of Elliptic and Hyperelliptic Curve Cryptography , 2005 .
[12] Weber’s formula for the bitangents of a smooth plane quartic , 2016, 1612.02049.
[13] G. Shimura,et al. ARITHMETIC OF UNITARY GROUPS , 1964 .
[14] Christophe Ritzenthaler,et al. Optimal curves of genus 1,2 and 3 , 2011, 1101.5871.
[15] S. Marseglia. Computing abelian varieties over finite fields isogenous to a power , 2018, Research in Number Theory.
[16] F. Oort,et al. The Torelli locus and special subvarieties , 2011, 1112.0933.
[17] R. Lercier,et al. Parametrizing the moduli space of curves and applications to smooth plane quartics over finite fields , 2014, 1403.0562.
[18] J. Igusa. On the irreducibility of Schottky's divisor , 1982 .
[19] Ki Ichiro Hashimoto,et al. Class numbers of definite unimodular Hermitian forms over the rings of imaginary quadratic fields , 1989 .
[20] G. Faltings,et al. Degeneration of Abelian varieties , 1990 .
[21] Anna Somoza,et al. An inverse Jacobian algorithm for Picard curves , 2016, Research in Number Theory.
[22] David Lubicz,et al. Arithmetic on abelian and Kummer varieties , 2016, Finite Fields Their Appl..
[23] Marco Streng,et al. Computing Igusa class polynomials , 2009, Math. Comput..
[24] David Lubicz,et al. Computing isogenies between abelian varieties , 2010, Compositio Mathematica.
[25] Almost ordinary abelian varieties over finite fields , 2019, Journal of the London Mathematical Society.
[26] L. Gerritzen,et al. The lowest term of the Schottky modular form , 1992 .
[27] Everett W. Howe. Principally polarized ordinary abelian varieties over finite fields , 1995 .
[28] J. Tate. Endomorphisms of abelian varieties over finite fields , 1966 .
[29] T. Matsusaka. On a Theorem of Torelli , 1958 .
[31] Enric Nart,et al. JACOBIANS IN ISOGENY CLASSES OF ABELIAN SURFACES OVER FINITE FIELDS , 2006, math/0607515.
[32] On some questions of Serre on abelian threefolds , 2008 .
[33] Taira Honda,et al. Isogeny classes of abelian varieties over finite fields , 1968 .
[34] Jan Hendrik Bruinier,et al. The 1-2-3 of Modular Forms: Lectures at a Summer School in Nordfjordeid, Norway , 2008 .
[35] D. Mumford. On the equations defining abelian varieties. I , 1966 .
[36] Qing Liu,et al. Algebraic Geometry and Arithmetic Curves , 2002 .
[37] Boris Hemkemeier,et al. Incremental Algorithms for Lattice Problems , 2006 .
[38] L. Candelori. The transformation laws of algebraic theta functions , 2016, 1609.04486.
[39] Wee Teck Gan,et al. Group schemes and local densities , 2000 .
[40] Sorina Ionica,et al. Constructing genus 3 hyperelliptic Jacobians with CM , 2016, IACR Cryptol. ePrint Arch..
[41] K. Lauter,et al. A CRT ALGORITHM FOR CONSTRUCTING GENUS 2 CURVES OVER FINITE FIELDS , 2004, math/0405305.
[42] Bernd Sturmfels,et al. Schottky algorithms: Classical meets tropical , 2017, Math. Comput..
[43] Christophe Ritzenthaler,et al. Explicit computations of Serre's obstruction for genus 3 curves and application to optimal curves , 2009, 0901.2920.
[44] J. Voight. Strong approximation , 2021, Graduate Texts in Mathematics.
[45] Ronald Jacobowitz,et al. Hermitian Forms Over Local Fields , 1962 .
[46] E. Kani. Products of CM elliptic curves , 2011 .
[47] Bruce W. Jordan,et al. Abelian varieties isogenous to a power of an elliptic curve , 2016, Compositio Mathematica.
[48] R. Lercier,et al. Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects , 2011, 1111.4152.
[49] Don Zagier,et al. The 1-2-3 of Modular Forms , 2008 .
[50] Gaetan Bisson,et al. Computing the endomorphism ring of an ordinary elliptic curve over a finite field , 2009, IACR Cryptol. ePrint Arch..
[51] Irwin Kra,et al. Theta Constants, Riemann Surfaces and the Modular Group , 2001 .
[53] P. Deligne,et al. Variétés abéliennes ordinaires sur un corps fini , 1969 .
[54] D. Lubicz,et al. Computing separable isogenies in quasi-optimal time , 2014, LMS J. Comput. Math..
[55] D. Mumford,et al. The irreducibility of the space of curves of given genus , 1969 .
[56] Alexander Schiemann,et al. Classification of Hermitian Forms with the Neighbour Method , 1998, J. Symb. Comput..
[57] Andrew V. Sutherland. Computing Hilbert class polynomials with the Chinese remainder theorem , 2009, Math. Comput..
[58] D. Hoffmann,et al. On positive definite hermitian forms , 1991 .
[59] S. Hansen. Rational Points on Curves over Finite Fields , 1995 .
[60] G. Kempf,et al. LINEAR SYSTEMS ON ABELIAN VARIETIES , 1989 .
[61] Damien Robert,et al. Computing (l, l)-isogenies in polynomial time on Jacobians of genus 2 curves , 2011, IACR Cryptol. ePrint Arch..
[62] W. Waterhouse,et al. Abelian varieties over finite fields , 1969 .
[63] Jacobians among Abelian threefolds: a formula of Klein and a question of Serre , 2010 .
[64] Zavosh Amir-Khosravi. Serre’s tensor construction and moduli of abelian schemes , 2015, 1507.07607.
[65] Tomoyoshi Ibukiyama,et al. Supersingular curves of genus two and class numbers , 1986 .
[66] U. Fincke,et al. Improved methods for calculating vectors of short length in a lattice , 1985 .
[67] Andreas Enge,et al. The complexity of class polynomial computation via floating point approximations , 2006, Math. Comput..
[68] Shoji Koizumi. Theta Relations and Projective Normality of Abelian Varieties , 1976 .
[69] Ben Silver,et al. Elements of the theory of elliptic functions , 1990 .
[70] A. Grothendieck,et al. Éléments de géométrie algébrique , 1960 .
[71] Safia Haloui. The characteristic polynomials of abelian varieties of dimensions 3 over finite fields , 2010, 1003.0374.
[72] K. Hashimoto,et al. CLASS NUMBERS OF POSITIVE DEFINITE BINARY AND TERNARY UNIMODULAR HERMITIAN FORMS , 1989 .
[73] K. Kedlaya,et al. Isogeny Classes of Abelian Varieties over Finite Fields in the LMFDB , 2020, 2003.05380.
[74] D. Mumford,et al. Geometric Invariant Theory , 2011 .
[75] Takashi Ichikawa. Theta Constants and Teichmüller Modular Forms , 1996 .