Spanning the isogeny class of a power of an elliptic curve

Let E E be an ordinary elliptic curve over a finite field and g g be a positive integer. Under some technical assumptions, we give an algorithm to span the isomorphism classes of principally polarized abelian varieties in the isogeny class of E g E^g . The varieties are first described as hermitian lattices over (not necessarily maximal) quadratic orders and then geometrically in terms of their algebraic theta null point. We also show how to algebraically compute Siegel modular forms of even weight given as polynomials in the theta constants by a careful choice of an affine lift of the theta null point. We then use these results to give an algebraic computation of Serre’s obstruction for principally polarized abelian threefolds isogenous to E 3 E^3 and of the Igusa modular form in dimension 4 4 . We illustrate our algorithms with examples of curves with many rational points over finite fields.

[1]  Jun-ichi Igusa Schottky’s Invariant and Quadratic Forms , 1981 .

[2]  J. Igusa,et al.  Modular Forms and Projective Invariants , 1967 .

[3]  J. Stix,et al.  Categories of abelian varieties over finite fields, I: Abelian varieties over p , 2015, 1501.02446.

[4]  Kenji Ueno,et al.  Principally polarized abelian variaties dimension two or three are Jacobian varieties , 1973 .

[5]  Alexey Zaytsev Optimal curves of low genus over finite fields , 2016, Finite Fields Their Appl..

[6]  Ching-Li Chai,et al.  Siegel Moduli Schemes and Their Compactifications over ℂ , 1986 .

[7]  Serge Lang,et al.  Abelian varieties , 1983 .

[8]  D. Mumford,et al.  On the equations defining abelian varieties. II , 1967 .

[9]  D. Mumford Tata Lectures on Theta I , 1982 .

[10]  Tse-Chung Yang,et al.  Supersingular abelian surfaces and Eichler’s class number formula , 2014, Asian Journal of Mathematics.

[11]  Tanja Lange,et al.  Handbook of Elliptic and Hyperelliptic Curve Cryptography , 2005 .

[12]  Weber’s formula for the bitangents of a smooth plane quartic , 2016, 1612.02049.

[13]  G. Shimura,et al.  ARITHMETIC OF UNITARY GROUPS , 1964 .

[14]  Christophe Ritzenthaler,et al.  Optimal curves of genus 1,2 and 3 , 2011, 1101.5871.

[15]  S. Marseglia Computing abelian varieties over finite fields isogenous to a power , 2018, Research in Number Theory.

[16]  F. Oort,et al.  The Torelli locus and special subvarieties , 2011, 1112.0933.

[17]  R. Lercier,et al.  Parametrizing the moduli space of curves and applications to smooth plane quartics over finite fields , 2014, 1403.0562.

[18]  J. Igusa On the irreducibility of Schottky's divisor , 1982 .

[19]  Ki Ichiro Hashimoto,et al.  Class numbers of definite unimodular Hermitian forms over the rings of imaginary quadratic fields , 1989 .

[20]  G. Faltings,et al.  Degeneration of Abelian varieties , 1990 .

[21]  Anna Somoza,et al.  An inverse Jacobian algorithm for Picard curves , 2016, Research in Number Theory.

[22]  David Lubicz,et al.  Arithmetic on abelian and Kummer varieties , 2016, Finite Fields Their Appl..

[23]  Marco Streng,et al.  Computing Igusa class polynomials , 2009, Math. Comput..

[24]  David Lubicz,et al.  Computing isogenies between abelian varieties , 2010, Compositio Mathematica.

[25]  Almost ordinary abelian varieties over finite fields , 2019, Journal of the London Mathematical Society.

[26]  L. Gerritzen,et al.  The lowest term of the Schottky modular form , 1992 .

[27]  Everett W. Howe Principally polarized ordinary abelian varieties over finite fields , 1995 .

[28]  J. Tate Endomorphisms of abelian varieties over finite fields , 1966 .

[29]  T. Matsusaka On a Theorem of Torelli , 1958 .

[31]  Enric Nart,et al.  JACOBIANS IN ISOGENY CLASSES OF ABELIAN SURFACES OVER FINITE FIELDS , 2006, math/0607515.

[32]  On some questions of Serre on abelian threefolds , 2008 .

[33]  Taira Honda,et al.  Isogeny classes of abelian varieties over finite fields , 1968 .

[34]  Jan Hendrik Bruinier,et al.  The 1-2-3 of Modular Forms: Lectures at a Summer School in Nordfjordeid, Norway , 2008 .

[35]  D. Mumford On the equations defining abelian varieties. I , 1966 .

[36]  Qing Liu,et al.  Algebraic Geometry and Arithmetic Curves , 2002 .

[37]  Boris Hemkemeier,et al.  Incremental Algorithms for Lattice Problems , 2006 .

[38]  L. Candelori The transformation laws of algebraic theta functions , 2016, 1609.04486.

[39]  Wee Teck Gan,et al.  Group schemes and local densities , 2000 .

[40]  Sorina Ionica,et al.  Constructing genus 3 hyperelliptic Jacobians with CM , 2016, IACR Cryptol. ePrint Arch..

[41]  K. Lauter,et al.  A CRT ALGORITHM FOR CONSTRUCTING GENUS 2 CURVES OVER FINITE FIELDS , 2004, math/0405305.

[42]  Bernd Sturmfels,et al.  Schottky algorithms: Classical meets tropical , 2017, Math. Comput..

[43]  Christophe Ritzenthaler,et al.  Explicit computations of Serre's obstruction for genus 3 curves and application to optimal curves , 2009, 0901.2920.

[44]  J. Voight Strong approximation , 2021, Graduate Texts in Mathematics.

[45]  Ronald Jacobowitz,et al.  Hermitian Forms Over Local Fields , 1962 .

[46]  E. Kani Products of CM elliptic curves , 2011 .

[47]  Bruce W. Jordan,et al.  Abelian varieties isogenous to a power of an elliptic curve , 2016, Compositio Mathematica.

[48]  R. Lercier,et al.  Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects , 2011, 1111.4152.

[49]  Don Zagier,et al.  The 1-2-3 of Modular Forms , 2008 .

[50]  Gaetan Bisson,et al.  Computing the endomorphism ring of an ordinary elliptic curve over a finite field , 2009, IACR Cryptol. ePrint Arch..

[51]  Irwin Kra,et al.  Theta Constants, Riemann Surfaces and the Modular Group , 2001 .

[53]  P. Deligne,et al.  Variétés abéliennes ordinaires sur un corps fini , 1969 .

[54]  D. Lubicz,et al.  Computing separable isogenies in quasi-optimal time , 2014, LMS J. Comput. Math..

[55]  D. Mumford,et al.  The irreducibility of the space of curves of given genus , 1969 .

[56]  Alexander Schiemann,et al.  Classification of Hermitian Forms with the Neighbour Method , 1998, J. Symb. Comput..

[57]  Andrew V. Sutherland Computing Hilbert class polynomials with the Chinese remainder theorem , 2009, Math. Comput..

[58]  D. Hoffmann,et al.  On positive definite hermitian forms , 1991 .

[59]  S. Hansen Rational Points on Curves over Finite Fields , 1995 .

[60]  G. Kempf,et al.  LINEAR SYSTEMS ON ABELIAN VARIETIES , 1989 .

[61]  Damien Robert,et al.  Computing (l, l)-isogenies in polynomial time on Jacobians of genus 2 curves , 2011, IACR Cryptol. ePrint Arch..

[62]  W. Waterhouse,et al.  Abelian varieties over finite fields , 1969 .

[63]  Jacobians among Abelian threefolds: a formula of Klein and a question of Serre , 2010 .

[64]  Zavosh Amir-Khosravi Serre’s tensor construction and moduli of abelian schemes , 2015, 1507.07607.

[65]  Tomoyoshi Ibukiyama,et al.  Supersingular curves of genus two and class numbers , 1986 .

[66]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[67]  Andreas Enge,et al.  The complexity of class polynomial computation via floating point approximations , 2006, Math. Comput..

[68]  Shoji Koizumi Theta Relations and Projective Normality of Abelian Varieties , 1976 .

[69]  Ben Silver,et al.  Elements of the theory of elliptic functions , 1990 .

[70]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[71]  Safia Haloui The characteristic polynomials of abelian varieties of dimensions 3 over finite fields , 2010, 1003.0374.

[72]  K. Hashimoto,et al.  CLASS NUMBERS OF POSITIVE DEFINITE BINARY AND TERNARY UNIMODULAR HERMITIAN FORMS , 1989 .

[73]  K. Kedlaya,et al.  Isogeny Classes of Abelian Varieties over Finite Fields in the LMFDB , 2020, 2003.05380.

[74]  D. Mumford,et al.  Geometric Invariant Theory , 2011 .

[75]  Takashi Ichikawa Theta Constants and Teichmüller Modular Forms , 1996 .