A performance evaluation of local descriptors

In this paper we compare the performance of interest point descriptors. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how their performance depends on the interest point detector. The descriptors should be distinctive and at the same time robust to changes in viewing conditions as well as to errors of the point detector. Our evaluation uses as criterion detection rate with respect to false positive rate and is carried out for different image transformations. We compare SIFT descriptors (Lowe, 1999), steerable filters (Freeman and Adelson, 1991), differential invariants (Koenderink ad van Doorn, 1987), complex filters (Schaffalitzky and Zisserman, 2002), moment invariants (Van Gool et al., 1996) and cross-correlation for different types of interest points. In this evaluation, we observe that the ranking of the descriptors does not depend on the point detector and that SIFT descriptors perform best. Steerable filters come second ; they can be considered a good choice given the low dimensionality.

[1]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[2]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[3]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[4]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[5]  T. Tuytelaars,et al.  Matching Widely Separated Views Based on Affine Invariant Regions , 2004, International Journal of Computer Vision.

[6]  R. Sukthankar,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[7]  Luc Van Gool,et al.  Edinburgh Research Explorer Simultaneous Object Recognition and Segmentation by Image Exploration , 2022 .

[8]  Peter Auer,et al.  Weak Hypotheses and Boosting for Generic Object Detection and Recognition , 2004, ECCV.

[9]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[10]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[11]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[12]  Cordelia Schmid,et al.  Selection of scale-invariant parts for object class recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[13]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[14]  Matthew A. Brown,et al.  Recognising panoramas , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[15]  Bernt Schiele,et al.  Analyzing appearance and contour based methods for object categorization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[16]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[17]  Andrew Zisserman,et al.  Texture classification: are filter banks necessary? , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[18]  Cordelia Schmid,et al.  A sparse texture representation using affine-invariant regions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[19]  James J. Little,et al.  Vision-based mapping with backward correction , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  James J. Little,et al.  Global localization using distinctive visual features , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Andrew Zisserman,et al.  Automated Scene Matching in Movies , 2002, CIVR.

[22]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Andrew Zisserman,et al.  Multi-view Matching for Unordered Image Sets, or "How Do I Organize My Holiday Snaps?" , 2002, ECCV.

[24]  Gustavo Carneiro,et al.  Phase-Based Local Features , 2002, ECCV.

[25]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[26]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[27]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[28]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[29]  Luc Van Gool,et al.  Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions , 2000, BMVC.

[30]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[31]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Andrew E. Johnson,et al.  Recognizing objects by matching oriented points , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Tony Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure , 1997, Image Vis. Comput..

[34]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Luc Van Gool,et al.  Mirror and point symmetry under perspective skewing , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  Luc Van Gool,et al.  Affine/ Photometric Invariants for Planar Intensity Patterns , 1996, ECCV.

[37]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[38]  Neil A. Thacker,et al.  Robust Recognition of Scaled Shapes using Pairwise Geometric Histograms , 1995, BMVC.

[39]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[40]  Max A. Viergever,et al.  General Intensity Transformations and Second Order Invariants , 1992 .

[41]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[43]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Dennis Gabor,et al.  Theory of communication , 1946 .