Rational, Hierarchical Parameterization of Complex Zeolite-guest Molecular Models

A hierarchical approach is presented for rationally parameterizing complex molecular models of guest species in microporous materials. The large number of microscopic processes (e.g. adsorption, desorption, site-to-site migration), and intrinsic complexity of potential energy surfaces characterizing these systems, demands simultaneous optimization to multiple sets of experimental data to ensure model predictive capabilities. The first step of the approach capitalizes on the computational efficiency of mean field models to initially identify sensitive parameters and narrow the window of parameter space. Surface response techniques are subsequently employed in this window for rational optimization of the computationally intensive molecular models. The hierarchical approach is developed in light of both enthalpic and entropic constraints to ensure consistency of multiple microscopic processes. We illustrate this approach using a lattice kinetic Monte-Carlo description of benzene in NaX zeolite. Through application of simulated annealing techniques, the hierarchical framework is capable of optimizing the model parameters simultaneously to disparate sets of experimental data (e.g. adsorption isotherms and PFG-NMR self-diffusivity). Finally, application to other atomistic models is also discussed.

[1]  Vlachos,et al.  From microscopic interactions to macroscopic laws of cluster evolution , 2000, Physical review letters.

[2]  S. Pouget,et al.  Diffusion of Benzene in ZSM-5 Measured by the Neutron Spin−Echo Technique , 2000 .

[3]  Randall Q. Snurr,et al.  Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions , 1993 .

[4]  G. Petroutsos,et al.  Examination of the adsorption of hydrocarbons at low coverage on faujasite zeolites , 1997 .

[5]  A. V. Kiselev Vapor Adsorption on Zeolites Considered as Crystalline Specific Adsorbents , 1971 .

[6]  B. Smit,et al.  Molecular Simulations of Adsorption Isotherms for Linear and Branched Alkanes and Their Mixtures in Silicalite , 1999 .

[7]  H. Pfeifer,et al.  Intracrystalline self-diffusion of benzene, toluene and xylene isomers in zeolites NaX , 1985 .

[8]  G. B. Suffritti,et al.  Structure and Dynamics of Zeolites Investigated by Molecular Dynamics. , 1997, Chemical reviews.

[9]  C. Grey,et al.  Characterization of Extra-Framework Cation Positions in Zeolites NaX and NaY with Very Fast 23Na MAS and Multiple Quantum MAS NMR Spectroscopy , 2000 .

[10]  G. Box,et al.  Empirical Model-Building and Response Surfaces. , 1990 .

[11]  H. Metiu,et al.  Transport Theory for Cationic Zeolites: Diffusion of Benzene in Na-Y , 1995 .

[12]  D. Theodorou,et al.  Diffusion and reaction in blocked and high occupancy zeolite catalysts , 1983 .

[13]  D. Sholl,et al.  Direct Tests of the Darken Approximation for Molecular Diffusion in Zeolites Using Equilibrium Molecular Dynamics , 2001 .

[14]  Randall Q. Snurr,et al.  A hierarchical atomistic/lattice simulation approach for the prediction of adsorption thermodynamics of benzene in silicalite , 1994 .

[15]  D. Olson The crystal structure of dehydrated NaX , 1995 .

[16]  Alexis T. Bell,et al.  Effect of topology and molecular occupancy on self-diffusion in lattice models of zeolites—Monte-Carlo simulations , 1998 .

[17]  L. Gladden,et al.  Monte Carlo lattice dynamics studies of binary adsorption in silicalite , 1999 .

[18]  D. Vlachos,et al.  Parameter Optimization of Molecular Models: Application to Surface Kinetics , 2003 .

[19]  Susan A. Somers,et al.  Lattice model and simulation of dynamics of adsorbate motion in zeolites , 1994 .

[20]  Hai Wang,et al.  A new approach to response surface development for detailed gas‐phase and surface reaction kinetic model optimization , 2003 .

[21]  Hai Wang,et al.  Thermodynamic consistency in microkinetic development of surface reaction mechanisms , 2003 .

[22]  E. Glandt,et al.  MOLECULAR SIMULATION STUDY OF THE SURFACE BARRIER EFFECT. DILUTE GAS LIMIT , 1995 .

[23]  B. Ha,et al.  Adsorption of benzene and cyclohexane on faujasite-type zeolites. Part 2.—Adsorption site efficiency and zeolite field influence at high coverage , 1973 .

[24]  H. Metiu,et al.  Diffusion in zeolites via cage-to-cage kinetics: Modeling benzene diffusion in Na-Y , 1996 .

[25]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[26]  E. Glandt,et al.  Steric hindrance at the entrances to small pores , 1995 .

[27]  P. Q. Du,et al.  Adsorption of ethane and ethylene on X-zeolites containing Li+, Na+, K+, Rb+ and Cs+ cations , 1971 .

[28]  S. Auerbach,et al.  Activated diffusion of benzene in NaY zeolite: Rate constants from transition state theory with dynamical corrections , 1997 .

[29]  Alexis T. Bell,et al.  Dynamic Monte-Carlo and mean-field study of the effect of strong adsorption sites on self-diffusion in zeolites , 1999 .

[30]  B. Ha,et al.  Adsorption of benzene and cyclohexane on faujasite-type zeolites. Part 1.—Thermodynamic properties at low coverage , 1973 .

[31]  S. Auerbach,et al.  Theory and simulation of cohesive diffusion in nanopores: Transport in subcritical and supercritical regimes , 1999 .

[32]  A. Bell,et al.  Molecular dynamics and diffusion in microporous materials , 1996 .

[33]  Dionisios G. Vlachos,et al.  Monte Carlo algorithms for complex surface reaction mechanisms: efficiency and accuracy , 2001 .

[34]  S. Auerbach,et al.  Modeling the concentration dependence of diffusion in zeolites. III. Testing mean field theory for benzene in Na–Y with simulation , 1998 .

[35]  M. Coppens,et al.  Modeling of Diffusion in Zeolites , 2000 .

[36]  Andrew J. Majda,et al.  Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems , 2003 .

[37]  S. Auerbach,et al.  Modeling the concentration dependence of diffusion in zeolites. I. Analytical theory for benzene in Na-Y , 1997 .

[38]  Scott M. Auerbach,et al.  Theory and simulation of jump dynamics, diffusion and phase equilibrium in nanopores , 2000 .

[39]  A. Fitch,et al.  Localization of benzene in sodium-Y-zeolite by powder neutron diffraction , 1986 .

[40]  S. Auerbach,et al.  Modeling the concentration dependence of diffusion in zeolites. II. Kinetic Monte Carlo simulations of benzene in Na-Y , 1997 .

[41]  J. Hanson,et al.  Combined X-ray and Neutron Powder Refinement and NMR Study of Hydrochlorofluorocarbon HCFC-124a (CF2HCF2Cl) Binding on NaX , 2001 .

[42]  S. Auerbach,et al.  ISING MODEL OF DIFFUSION IN MOLECULAR SIEVES , 1998 .

[43]  B. Smit,et al.  Simulating the Adsorption of Alkanes in Zeolites , 1994, Science.

[44]  Hood,et al.  Precursor-mediated molecular chemisorption and thermal desorption: The interrelationships among energetics, kinetics, and adsorbate lattice structures. , 1985, Physical review letters.

[45]  R. M. Barrer Molecular sieves , 1974, Nature.

[46]  C. Grey,et al.  Molecular Dynamics Studies of Hydrofluorocarbons in Faujasite-type Zeolites: Modeling Guest-Induced Cation Migration in Dry Zeolites , 2001 .

[47]  A. Majda,et al.  Coarse-grained stochastic processes for microscopic lattice systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Brickmann,et al.  DIFFUSION OF AROMATIC MOLECULES IN ZEOLITE NAY. 1. CONSTRAINED REACTION COORDINATE DYNAMICS , 1997 .

[49]  A. Cheetham,et al.  Neutron Diffraction and Computational Study of Zeolite NaX: Influence of SIII‘ Cations on Its Complex with Benzene , 1997 .

[50]  J. Hanson,et al.  Combined MAS NMR and X-ray Powder Diffraction Structural Characterization of Hydrofluorocarbon-134 Adsorbed on Zeolite NaY: Observation of Cation Migration and Strong Sorbate−Cation Interactions , 1997 .

[51]  A. B. Kaiser,et al.  Simulation of diffusion and adsorption in zeolites , 1991 .

[52]  L. Petzold Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations , 1983 .

[53]  Alexis T. Bell,et al.  Transport diffusivity of methane in silicalite from equilibrium and nonequilibrium simulations , 1993 .

[54]  D. Vlachos,et al.  Validation of mesoscopic theory and its application to computing concentration dependent diffusivities , 2001 .

[55]  M. A. Snydera,et al.  Mesoscopic modeling of transport and reaction in microporous crystalline membranes , 2003 .

[56]  Vlachos,et al.  Derivation and validation of mesoscopic theories for diffusion of interacting molecules , 2000, Physical review letters.

[57]  L. A. Clark,et al.  Adsorption isotherm sensitivity to small changes in zeolite structure , 1999 .

[58]  D. Ruthven,et al.  Diffusion of hydrocarbons in 13X zeolite , 1976 .