Investigating carbon materials nanostructure using image orientation statistics

[1]  Larry S. Davis,et al.  Texture Analysis Using Generalized Co-Occurrence Matrices , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[3]  A. Oberlin,et al.  Microtexture and structure of some high-modulus, PAN-base carbon fibres , 1984 .

[4]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[5]  Michael Unser,et al.  Sum and Difference Histograms for Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  A. Oberlin,et al.  Characterization of low temperature pyrocarbons obtained by densification of porous substrates , 1986 .

[7]  J. Rouzaud,et al.  Structure, microtexture, and optical properties of anthracene and saccharose-based carbons , 1989 .

[8]  Y. Gotoh,et al.  High resolution electron microscopy of graphite defect structures after KeV hydrogen ion bombardment , 1989 .

[9]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  J. Dahn,et al.  Structure‐refinement program for disordered carbons , 1993 .

[12]  Robert M. Haralick,et al.  Texture Anisotropy, Symmetry, Regularity: Recovering Structure and Orientation from Interaction Maps , 1995, BMVC.

[13]  Gerhard Krieger,et al.  Nonlinear image operators for the evaluation of local intrinsic dimensionality , 1996, IEEE Trans. Image Process..

[14]  T. Tanabe Radiation damage of graphite - degradation of material parameters and defect structures , 1996 .

[15]  Maria Petrou,et al.  Multidimensional Co-occurrence Matrices for Object Recognition and Matching , 1996, CVGIP Graph. Model. Image Process..

[16]  Maria Petrou,et al.  Using orientation tokens for object recognition , 1998, Pattern Recognit. Lett..

[17]  Dmitry Chetverikov,et al.  Texture analysis using feature-based pairwise interaction maps , 1999, Pattern Recognit..

[18]  T. Kyotani,et al.  A new quantitative approach for microstructural analysis of coal char using HRTEM images , 1999 .

[19]  R. Hurt,et al.  A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons , 2000 .

[20]  Pierre Baylou,et al.  Level curve tracking algorithm for textural feature extraction , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[21]  Jean-Pierre Da Costa,et al.  A curvilinear approach for textural feature extraction: application to the characterization of composite material images , 2001 .

[22]  B. Smarsly,et al.  X-ray scattering of non-graphitic carbon: an improved method of evaluation , 2002 .

[23]  K. J. Hüttinger,et al.  On the terminology for pyrolytic carbon , 2002 .

[24]  X. Bourrat,et al.  Regenerative laminar pyrocarbon , 2002 .

[25]  Huang Bai-yun,et al.  Influence of the pore structure of carbon fibers on the oxidation resistance of C/C composites , 2002 .

[26]  Pierre Baylou,et al.  Orientation difference statistics for texture description , 2002, Object recognition supported by user interaction for service robots.

[27]  J. Rouzaud,et al.  Quantitative high-resolution transmission electron microscopy: a promising tool for carbon materials characterization , 2002 .

[28]  Pierre Baylou,et al.  Multiscale estimation of vector field anisotropy application to texture characterization , 2003, Signal Process..

[29]  R. V. Vander Wal,et al.  Analysis of HRTEM images for carbon nanostructure quantification , 2004 .

[30]  Pierre Baylou,et al.  A new adaptive framework for unbiased orientation estimation in textured images , 2005, Pattern Recognit..

[31]  Pierre Baylou,et al.  Estimating local multiple orientations , 2007, Signal Process..

[32]  Rachid Deriche,et al.  Texture and color segmentation based on the combined use of the structure tensor and the image components , 2008, Signal Process..

[33]  Jean-Pierre Da Costa,et al.  An image-guided atomistic reconstruction of pyrolytic carbons , 2009 .

[34]  N. Moncoffre,et al.  Characterization of graphite implanted with chlorine ions using combined Raman microspectrometry and transmission electron microscopy on thin sections prepared by focused ion beam , 2010 .

[35]  Jean-Pierre Da Costa,et al.  MULTI-SCALE QUANTITATIVE ANALYSIS OF CARBON STRUCTURE AND TEXTURE: III. LATTICE FRINGE IMAGING ANALYSIS , 2010 .

[36]  R. L. Wal,et al.  Soot and char molecular representations generated directly from HRTEM lattice fringe images using Fringe3D , 2011 .

[37]  Randy L. Vander Wal,et al.  Development of an HRTEM image analysis method to quantify carbon nanostructure , 2011 .

[38]  A. V. Duin,et al.  The utility of coal molecular models , 2011 .

[39]  J. Lighty,et al.  Quantitative differentiation of poorly ordered soot nanostructures: A semi-empirical approach , 2012 .

[40]  J.-P. Da Costa,et al.  Structural features of pyrocarbon atomistic models constructed from transmission electron microscopy images , 2012 .

[41]  P. Weisbecker,et al.  Microstructure of pyrocarbons from pair distribution function analysis using neutron diffraction , 2012 .

[42]  D. Jeulin,et al.  A new approach to characterize the nanostructure of activated carbons from mathematical morphology applied to high resolution transmission electron microscopy images , 2013 .

[43]  P Toth,et al.  Automated analysis of heterogeneous carbon nanostructures by high-resolution electron microscopy and on-line image processing. , 2013, Ultramicroscopy.

[44]  Ross T. Whitaker,et al.  A novel framework for the quantitative analysis of high resolution transmission electron micrographs of soot II. Robust multiscale nanostructure quantification , 2013 .

[45]  J. Lighty,et al.  A novel framework for the quantitative analysis of high resolution transmission electron micrographs of soot I. Improved measurement of interlayer spacing , 2013 .

[46]  B. Smarsly,et al.  Investigation of the Microstructure of Disordered, Non‐graphitic Carbons by an Advanced Analysis Method for Wide‐Angle X‐ray Scattering , 2014 .

[47]  J.-P. Da Costa,et al.  Nanoscale structure and texture of highly anisotropic pyrocarbons revisited with transmission electron microscopy, image processing, neutron diffraction and atomistic modeling , 2014 .

[48]  B. Bhushan Springer Handbook of Nanotechnology , 2017 .