What is the Space of Attenuation Coefficients in Underwater Computer Vision?

Underwater image reconstruction methods require the knowledge of wideband attenuation coefficients per color channel. Current estimation methods for these coefficients require specialized hardware or multiple images, and none of them leverage the multitude of existing ocean optical measurements as priors. Here, we aim to constrain the set of physically-feasible wideband attenuation coefficients in the ocean by utilizing water attenuation measured worldwide by oceanographers. We calculate the space of valid wideband effective attenuation coefficients in the 3D RGB domain and find that a bound manifold in 3-space sufficiently represents the variation from the clearest to murkiest waters. We validate our model using in situ experiments in two different optical water bodies, the Red Sea and the Mediterranean. Moreover, we show that contradictory to the common image formation model, the coefficients depend on the imaging range and object reflectance, and quantify the errors resulting from ignoring these dependencies.

[1]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[2]  Curtis D Mobley,et al.  Inherent optical properties of Jerlov water types. , 2015, Applied optics.

[3]  David J. Kriegman,et al.  Photometric Stereo in a Scattering Medium , 2015, ICCV.

[4]  G. Winters,et al.  Photographic assessment of coral chlorophyll contents: Implications for ecophysiological studies and coral monitoring , 2009 .

[5]  N. Roy,et al.  Colour-Consistent Structure-from-Motion Models Using Underwater Imagery , 2013 .

[6]  D H Brainard,et al.  Bayesian color constancy. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  L. Talley,et al.  Introduction to Descriptive Physical Oceanography , 2011 .

[8]  Shree K. Nayar,et al.  Instant dehazing of images using polarization , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[9]  S. Phinn,et al.  A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans , 2014 .

[10]  Roger T Hanlon,et al.  Use of commercial off-the-shelf digital cameras for scientific data acquisition and scene-specific color calibration. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  Jules S. Jaffe,et al.  Computer modeling and the design of optimal underwater imaging systems , 1990 .

[12]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[13]  Chris Murphy,et al.  Improving color correction for underwater image surveys , 2011, OCEANS'11 MTS/IEEE KONA.

[14]  R. W. Austin,et al.  Spectral dependence of the diffuse attenuation coefficient of light in ocean waters , 1986 .

[15]  Glenn Healey,et al.  What is the spectral dimensionality of illumination functions in outdoor scenes? , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[16]  Robby T. Tan,et al.  Visibility in bad weather from a single image , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Yoav Y. Schechner,et al.  Clear underwater vision , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[18]  Silvia Silva da Costa Botelho,et al.  Transmission Estimation in Underwater Single Images , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[19]  Guy Gilboa,et al.  In situ target-less calibration of turbid media , 2017, 2017 IEEE International Conference on Computational Photography (ICCP).

[20]  Sabine Süsstrunk,et al.  What is the space of spectral sensitivity functions for digital color cameras? , 2013, 2013 IEEE Workshop on Applications of Computer Vision (WACV).

[21]  Shree K. Nayar,et al.  Modeling the space of camera response functions , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  M. Lewis,et al.  Optical oceanography: Recent advances and future directions using global remote sensing and in situ observations , 2006 .

[23]  Raanan Fattal,et al.  Dehazing Using Color-Lines , 2014, ACM Trans. Graph..

[24]  N Carlevaris-Bianco,et al.  Initial results in underwater single image dehazing , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[25]  Risto Myllylä,et al.  Optical Measurement Techniques: Innovations for Industry and the Life Sciences , 2009 .

[26]  Huimin Lu,et al.  Contrast enhancement for images in turbid water. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  Ko Nishino,et al.  Bayesian Defogging , 2012, International Journal of Computer Vision.

[28]  Raymond C. Smith,et al.  AVOIDING SHIP-INDUCED LIGHT-FIELD PERTURBATION IN THE DETERMINATION OF OCEANIC OPTICAL PROPERTIES , 1990 .

[29]  Xiaoou Tang,et al.  Single Image Haze Removal Using Dark Channel Prior , 2011 .

[30]  L. Lazzara,et al.  Characterisation of a Tunisian coastal lagoon through hyperspectral underwater irradiance , 2016 .

[31]  Dariusz Stramski,et al.  Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe , 2003 .

[32]  Atsushi Yamashita,et al.  Color Registration of Underwater Images for Underwater Sensing with Consideration of Light Attenuation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[33]  Y.Y. Schechner,et al.  Recovery of underwater visibility and structure by polarization analysis , 2005, IEEE Journal of Oceanic Engineering.

[34]  Yoav Y. Schechner,et al.  Active Polarization Descattering , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  P. Falkowski,et al.  SOLAR ENERGY AND ITS BIOLOGICAL – PHYSICAL INTERACTIONS IN THE SEA , 2001 .

[36]  Shree K. Nayar,et al.  Multispectral Imaging Using Multiplexed Illumination , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[37]  Shree K. Nayar,et al.  Acquiring scattering properties of participating media by dilution , 2006, ACM Trans. Graph..

[38]  Jeppe Revall Frisvad,et al.  Computing the scattering properties of participating media using Lorenz-Mie theory , 2007, ACM Trans. Graph..

[39]  Ying-Ching Chen,et al.  Underwater Image Enhancement by Wavelength Compensation and Dehazing , 2012, IEEE Transactions on Image Processing.

[40]  Shuang Zhao,et al.  Inverse volume rendering with material dictionaries , 2013, ACM Trans. Graph..

[41]  H. Dierssen,et al.  Remote Sensing of Ocean Color , 2013 .

[42]  Shai Avidan,et al.  Air-light estimation using haze-lines , 2017, 2017 IEEE International Conference on Computational Photography (ICCP).

[43]  Kirk Knobelspiesse,et al.  Unique data repository facilitates ocean color satellite validation , 2003 .

[44]  Helgi Arst,et al.  Preliminary optical classification of lakes and coastal waters in Estonia and south Finland , 2003 .

[45]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance , 1987 .

[46]  Shai Avidan,et al.  Non-local Image Dehazing , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Todd E. Zickler,et al.  Blind Reflectometry , 2010, ECCV.

[48]  Stefan B. Williams,et al.  True Color Correction of Autonomous Underwater Vehicle Imagery , 2016, J. Field Robotics.