Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells
暂无分享,去创建一个
Craig A. Grimes | Karthik Shankar | Oomman K. Varghese | Gopal K. Mor | Maggie Paulose | C. Grimes | O. Varghese | G. Mor | M. Paulose | K. Shankar | Haripriya E. Prakasam | S. Yoriya | Sorachon Yoriya
[1] Craig A. Grimes,et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .
[2] Craig A. Grimes,et al. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .
[3] K. G. Ong,et al. A Transcutaneous Hydrogen Sensor: From Design to Application , 2006 .
[4] Craig A. Grimes,et al. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .
[5] Craig A Grimes,et al. Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.
[6] Craig A. Grimes,et al. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .
[7] J. Macák,et al. Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol , 2005 .
[8] K. G. Ong,et al. Numerical simulation of light propagation through highly-ordered titania nanotube arrays: dimension optimization for improved photoabsorption. , 2005, Journal of nanoscience and nanotechnology.
[9] Craig A. Grimes,et al. Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .
[10] C. Grimes,et al. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.
[11] Patrik Schmuki,et al. High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.
[12] Craig A. Grimes,et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .
[13] Craig A Grimes,et al. Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.
[14] A. J. Frank,et al. Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties , 2004 .
[15] Craig A. Grimes,et al. A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .
[16] Craig A. Grimes,et al. Fabrication of tapered, conical-shaped titania nanotubes , 2003 .
[17] H. Föll,et al. Organic and aqueous electrolytes used for etching macro- and mesoporous silicon , 2003 .
[18] Ion Tiginyanu,et al. Pores in III–V Semiconductors , 2003 .
[19] Craig A. Grimes,et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .
[20] K. Izutsu. Electrochemistry in Nonaqueous Solutions , 2002 .
[21] Craig A. Grimes,et al. Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .
[22] M. Ue,et al. Anodization of Al–Nd alloy films in nonaqueous electrolyte solutions for TFT-LCD application , 2001 .