Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells

The fabrication of highly-ordered TiO2 nanotube arrays up to 134 µm in length by anodization of Ti foil has recently been reported (Paulose et al 2006 J. Phys. Chem. B 110 16179). This work reports an extension of the fabrication technique to achieve TiO2 nanotube arrays up to 220 µm in length, with a length-to-outer diameter aspect ratio of ≈1400, as well as their initial application in dye-sensitized solar cells and hydrogen production by water photoelectrolysis. The highly-ordered TiO2 nanotube arrays are fabricated by potentiostatic anodization of Ti foil in fluoride ion containing baths in combination with non-aqueous organic polar electrolytes including N-methylformamide, dimethyl sulfoxide, formamide, or ethylene glycol. Depending upon the anodization voltage, the inner pore diameters of the resulting nanotube arrays range from 20 to 150 nm. As confirmed by glancing angle x-ray diffraction and HRTEM studies, the as-prepared nanotubes are amorphous but crystallize with annealing at elevated temperatures.

[1]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[2]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[3]  K. G. Ong,et al.  A Transcutaneous Hydrogen Sensor: From Design to Application , 2006 .

[4]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .

[5]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[6]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[7]  J. Macák,et al.  Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol , 2005 .

[8]  K. G. Ong,et al.  Numerical simulation of light propagation through highly-ordered titania nanotube arrays: dimension optimization for improved photoabsorption. , 2005, Journal of nanoscience and nanotechnology.

[9]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[10]  C. Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[11]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[12]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[13]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[14]  A. J. Frank,et al.  Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties , 2004 .

[15]  Craig A. Grimes,et al.  A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .

[16]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[17]  H. Föll,et al.  Organic and aqueous electrolytes used for etching macro- and mesoporous silicon , 2003 .

[18]  Ion Tiginyanu,et al.  Pores in III–V Semiconductors , 2003 .

[19]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[20]  K. Izutsu Electrochemistry in Nonaqueous Solutions , 2002 .

[21]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[22]  M. Ue,et al.  Anodization of Al–Nd alloy films in nonaqueous electrolyte solutions for TFT-LCD application , 2001 .