Secretion of recombinant proteins from E. coli

The microorganism Escherichia coli is commonly used for recombinant protein production. Despite several advantageous characteristics like fast growth and high protein yields, its inability to easily secrete recombinant proteins into the extracellular medium remains a drawback for industrial production processes. To overcome this limitation, a multitude of approaches to enhance the extracellular yield and the secretion efficiency of recombinant proteins have been developed in recent years. Here, a comprehensive overview of secretion mechanisms for recombinant proteins from E. coli is given and divided into three main sections. First, the structure of the E. coli cell envelope and the known natural secretion systems are described. Second, the use and optimization of different one‐ or two‐step secretion systems for recombinant protein production, as well as further permeabilization methods are discussed. Finally, the often‐overlooked role of cell lysis in secretion studies and its analysis are addressed. So far, effective approaches for increasing the extracellular protein concentration to more than 10 g/L and almost 100% secretion efficiency exist, however, the large range of optimization methods and their combinations suggests that the potential for secretory protein production from E. coli has not yet been fully realized.

[1]  J. Pratap,et al.  Effect of signal peptide changes on the extracellular processing of streptokinase from Escherichia coli : requirement for secondary structure at the cleavage junction , 1998, Molecular and General Genetics MGG.

[2]  Jian Chen,et al.  Delayed supplementation of glycine enhances extracellular secretion of the recombinant α-cyclodextrin glycosyltransferase in Escherichia coli , 2009, Applied Microbiology and Biotechnology.

[3]  D. Summers,et al.  Recombinant protein secretion in Escherichia coli. , 2005, Biotechnology advances.

[4]  I. Collinson,et al.  Channel crossing: how are proteins shipped across the bacterial plasma membrane? , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  S. Lee,et al.  Excretion of Human β-Endorphin into Culture Medium by Using Outer Membrane Protein F as a Fusion Partner in Recombinant Escherichia coli , 2002, Applied and Environmental Microbiology.

[6]  Seung Hwan Lee,et al.  Efficient extracellular production of type I secretion pathway-dependent Pseudomonas fluorescens lipase in recombinant Escherichia coli by heterologous ABC protein exporters , 2014, Biotechnology Letters.

[7]  W. Wickner,et al.  SecYEG and SecA Are the Stoichiometric Components of Preprotein Translocase (*) , 1995, The Journal of Biological Chemistry.

[8]  H. Lilie,et al.  YcdB from Escherichia coli Reveals a Novel Class of Tat-dependently Translocated Hemoproteins* , 2006, Journal of Biological Chemistry.

[9]  H. Unno,et al.  Programmed Escherichia coli Cell Lysis by Expression of Cloned T4 Phage Lysis Genes , 2001, Biotechnology progress.

[10]  K. Namba,et al.  Mechanisms of type III protein export for bacterial flagellar assembly. , 2008, Molecular bioSystems.

[11]  Jian Chen,et al.  A novel strategy for enhancing extracellular secretion of recombinant proteins in Escherichia coli , 2013, Applied Microbiology and Biotechnology.

[12]  Anna Hjelm,et al.  High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG , 2015, Microbial Cell Factories.

[13]  T. Scheper,et al.  Extracellular production and affinity purification of recombinant proteins with Escherichia coli using the versatility of the maltose binding protein. , 2009, Journal of biotechnology.

[14]  C. Hoischen,et al.  Expression and secretion of functional miniantibodies McPC603scFvDhlx in cell-wall-less L-form strains of Proteus mirabilis and Escherichia coli : A comparison of the synthesis capacities of L-form strains with an E. coli producer strain , 1998, Applied Microbiology and Biotechnology.

[15]  V. Chandran Type IV secretion machinery: molecular architecture and function. , 2013, Biochemical Society transactions.

[16]  Chun Zou,et al.  Triton X-100 enhances the solubility and secretion ratio of aggregation-prone pullulanase produced in Escherichia coli. , 2015, Bioresource technology.

[17]  Hagen Richter,et al.  Microbial Secretion via Esetec Technology , 2017 .

[18]  W. Goebel,et al.  Processing by OmpT of fusion proteins carrying the HlyA transport signal during secretion by theEscherichia coli hemolysin transport system , 1992, Molecular and General Genetics MGG.

[19]  B. Berks The twin-arginine protein translocation pathway. , 2015, Annual review of biochemistry.

[20]  Long-Fei Wu,et al.  Discrimination between SRP‐ and SecA/SecB‐dependent substrates involves selective recognition of nascent chains by SRP and trigger factor , 2000, The EMBO journal.

[21]  G. Waksman,et al.  Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria , 2008, The EMBO journal.

[22]  Gunnar von Heijne,et al.  Competition between Sec‐ and TAT‐dependent protein translocation in Escherichia coli , 1999, The EMBO journal.

[23]  A. Buttkewitz Entwicklung einer neuen funktionellen Proteintechnologie in E. coli , 2005 .

[24]  K. Friehs,et al.  Efficient production of extracellular proteins with Escherichia coli by means of optimized coexpression of bacteriocin release proteins. , 2010, Journal of biotechnology.

[25]  Sheng Yang,et al.  Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System , 2015, Applied and Environmental Microbiology.

[26]  M. Chou,et al.  Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides. , 1990, The Journal of biological chemistry.

[27]  X. Soberón,et al.  Improvement of an Unusual Twin-Arginine Transporter Leader Peptide by a Codon-Based Randomization Approach , 2006, Applied and Environmental Microbiology.

[28]  D. Oxender,et al.  Defective transport and other phenotypes of a periplasmic "leaky" mutant of Escherichia coli K-12 , 1979, Journal of bacteriology.

[29]  Rui Xue,et al.  Facile, reagentless and in situ release of Escherichia coli intracellular enzymes by heat-inducible autolytic vector for high-throughput screening. , 2008, Protein engineering, design & selection : PEDS.

[30]  R. Freedman,et al.  Investigation of the impact of Tat export pathway enhancement on E. coli culture, protein production and early stage recovery , 2012, Biotechnology and bioengineering.

[31]  Matthias Müller,et al.  Signal Recognition Particle and SecA Cooperate during Export of Secretory Proteins with Highly Hydrophobic Signal Sequences , 2014, PloS one.

[32]  Mike Hoare,et al.  Enhancing the selective extracellular location of a recombinant E. coli domain antibody by management of fermentation conditions , 2015, Applied Microbiology and Biotechnology.

[33]  O. Spadiut,et al.  Simple monitoring of cell leakiness and viability in Escherichia coli bioprocesses—A case study , 2017, Engineering in life sciences.

[34]  D. Wei,et al.  Extracellular Production of Human Parathyroid Hormone as a Thioredoxin Fusion Form in Escherichia coli by Chemical Permeabilization Combined with Heat Treatment , 2005, Biotechnology progress.

[35]  Gabriel Waksman,et al.  Secretion systems in Gram-negative bacteria: structural and mechanistic insights , 2015, Nature Reviews Microbiology.

[36]  A. Bolhuis,et al.  Quantitative export of a reporter protein, GFP, by the twin-arginine translocation pathway in Escherichia coli. , 2003, Biochemical and biophysical research communications.

[37]  Jin-Ho Seo,et al.  Application of repeated aspartate tags to improving extracellular production of Escherichia coli L-asparaginase isozyme II. , 2015, Enzyme and microbial technology.

[38]  Jin Young Kim,et al.  Comparison of the large-scale periplasmic proteomes of the Escherichia coli K-12 and B strains. , 2014, Journal of bioscience and bioengineering.

[39]  Y. Hirota,et al.  On the process of cellular division in Escherichia coli: a mutant of E. coli lacking a murein-lipoprotein. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Kuhn,et al.  Protein traffic in Gram-negative bacteria--how exported and secreted proteins find their way. , 2012, FEMS microbiology reviews.

[41]  S. Brokx,et al.  Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli , 2006, Nature Biotechnology.

[42]  H. Nakano,et al.  Extracellular production of Pseudozyma (Candida) antarctica lipase B with genuine primary sequence in recombinant Escherichia coli. , 2016, Journal of bioscience and bioengineering.

[43]  F. Mergulhão,et al.  Analysis of factors affecting the periplasmic production of recombinant proteins in Escherichia coli. , 2007, Journal of microbiology and biotechnology.

[44]  B. Oudega,et al.  Bacteriocin release proteins: mode of action, structure, and biotechnological application. , 1995, FEMS microbiology reviews.

[45]  J. de Gier,et al.  Application of an E. coli signal sequence as a versatile inclusion body tag , 2017, Microbial Cell Factories.

[46]  L. Silver,et al.  Leakage of periplasmic enzymes from envA1 strains of Escherichia coli , 1991, Journal of bacteriology.

[47]  M. Porteus,et al.  A crisper look at genome editing: RNA-guided genome modification. , 2013, Molecular therapy : the journal of the American Society of Gene Therapy.

[48]  J. Lazzaroni,et al.  The excC and excD genes of Escherichia coli K-12 encode the peptidoglycan-associated lipoprotein (PAL) and the TolQ protein, respectively , 1992 .

[49]  A. Driessen,et al.  Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. , 2008, Biochimica et biophysica acta.

[50]  W. Tong,et al.  Construction of leaky strains and extracellular production of exogenous proteins in recombinant Escherichia coli , 2014, Microbial biotechnology.

[51]  B. V. von Specht,et al.  Secretory delivery of recombinant proteins in attenuated Salmonella strains: potential and limitations of Type I protein transporters. , 2003, FEMS immunology and medical microbiology.

[52]  Yuliya N. Yoncheva,et al.  pH-Dependent Expression of Periplasmic Proteins and Amino Acid Catabolism in Escherichia coli , 2002, Journal of bacteriology.

[53]  J. Lott,et al.  Using secretion to solve a solubility problem: high-yield expression in Escherichia coli and purification of the bacterial glycoamidase PNGase F. , 2002, Protein expression and purification.

[54]  T. Brüser,et al.  DnaK Plays a Pivotal Role in Tat Targeting of CueO and Functions beside SlyD as a General Tat Signal Binding Chaperone* , 2007, Journal of Biological Chemistry.

[55]  J. Dordick,et al.  A strategy for in vivo screening of subtilisin E reaction specificity in E. coli periplasm. , 2002, Biotechnology and bioengineering.

[56]  F. Blattner,et al.  Secretory expression of biologically active human Herpes virus interleukin-10 analogues in Escherichia coli via a modified Sec-dependent transporter construct , 2013, BMC Biotechnology.

[57]  Si-Yu Li,et al.  Coexpression of TorD enhances the transport of GFP via the TAT pathway. , 2006, Journal of biotechnology.

[58]  Jason T Boock,et al.  An Engineered Survival-Selection Assay for Extracellular Protein Expression Uncovers Hypersecretory Phenotypes in Escherichia coli. , 2017, ACS synthetic biology.

[59]  Jörg P. Müller,et al.  The Twin-arginine Signal Peptide of PhoD and the TatAd/Cd Proteins of Bacillus subtilis Form an Autonomous Tat Translocation System* , 2002, The Journal of Biological Chemistry.

[60]  P. Wark,et al.  Effects of Temperature-Induced Changes in Membrane Composition on Transformation Efficiency in E . coli DH 5 α , 2009 .

[61]  L. Laakkonen,et al.  Two distinct regions in the model protein Peb1 are critical for its heterologous transport out of Escherichia coli , 2010, Microbial cell factories.

[62]  Hyung Joon Cha,et al.  Functional periplasmic secretion of organophosphorous hydrolase using the twin-arginine translocation pathway in Escherichia coli. , 2005, Journal of biotechnology.

[63]  L Birch,et al.  Molecular methods for the assessment of bacterial viability. , 2003, Journal of microbiological methods.

[64]  O. Fayet,et al.  Combined effects of the signal sequence and the major chaperone proteins on the export of human cytokines in Escherichia coli , 1996, Applied and environmental microbiology.

[65]  B. Lugtenberg,et al.  Heptose-deficient mutants ofEscherichia coli K12 deficient in up to three major outer membrane proteins , 1976, Molecular and General Genetics MGG.

[66]  Roland Freudl,et al.  Escherichia coli Twin Arginine (Tat) Mutant Translocases Possessing Relaxed Signal Peptide Recognition Specificities* , 2007, Journal of Biological Chemistry.

[67]  J. Lazzaroni,et al.  Isolation and preliminary characterization of periplasmic-leaky mutants of Escherichia coli K-12 , 1979 .

[68]  K. Friehs,et al.  Increasing the secretion ability of the kil gene for recombinant proteins in Escherichia coli by using a strong stationary-phase promoter , 2007, Biotechnology Letters.

[69]  G. Sawers,et al.  Constitutive Expression of Escherichia coli tat Genes Indicates an Important Role for the Twin-Arginine Translocase during Aerobic and Anaerobic Growth , 2001, Journal of bacteriology.

[70]  S. Leonhartsberger Efficiently Secretes Recombinant Proteins into Culture Broth , 2006 .

[71]  R. Macnab Type III flagellar protein export and flagellar assembly. , 2004, Biochimica et biophysica acta.

[72]  V. de Lorenzo,et al.  Specific Secretion of Active Single-Chain Fv Antibodies into the Supernatants of Escherichia coliCultures by Use of the Hemolysin System , 2000, Applied and Environmental Microbiology.

[73]  W. Kühlbrandt,et al.  Consensus structural features of purified bacterial TatABC complexes. , 2003, Journal of molecular biology.

[74]  W. Deckwer,et al.  Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli , 2006, Bioprocess and biosystems engineering.

[75]  K. Omori,et al.  Lipase secretion by bacterial hybrid ATP-binding cassette exporters: molecular recognition of the LipBCD, PrtDEF, and HasDEF exporters , 1997, Journal of bacteriology.

[76]  T. Silhavy,et al.  The bacterial cell envelope. , 2010, Cold Spring Harbor perspectives in biology.

[77]  I. Henderson,et al.  A generalised module for the selective extracellular accumulation of recombinant proteins , 2012, Microbial Cell Factories.

[78]  J. Barbero,et al.  Increasing the Efficiency of Protein Export in Escherichia coli , 1994, Bio/Technology.

[79]  J. Beckwith,et al.  The DsbA Signal Sequence Directs Efficient, Cotranslational Export of Passenger Proteins to the Escherichia coli Periplasm via the Signal Recognition Particle Pathway , 2003, Journal of bacteriology.

[80]  S. Yoon,et al.  Secretory production of recombinant proteins in Escherichia coli. , 2010, Recent patents on biotechnology.

[81]  R. Stroud,et al.  Targeting proteins to membranes: structure of the signal recognition particle. , 2005, Current opinion in structural biology.

[82]  M. Jennings,et al.  Experimental confirmation of a key role for non-optimal codons in protein export. , 2007, Biochemical and biophysical research communications.

[83]  Timo K. Korhonen,et al.  Extracellular secretion of polypeptides using a modified Escherichia coli flagellar secretion apparatus , 2005, Nature Biotechnology.

[84]  Murray Moo-Young,et al.  Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli , 2015, Applied and Environmental Microbiology.

[85]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[86]  S. Fijan Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature , 2014, International journal of environmental research and public health.

[87]  S. Tans,et al.  SecB--a chaperone dedicated to protein translocation. , 2010, Molecular bioSystems.

[88]  E. Flaschel,et al.  Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors , 2002, Applied Microbiology and Biotechnology.

[89]  M. Taya,et al.  Quantitative Evaluation of Recombinant Protein Packaged into Outer Membrane Vesicles of Escherichia coli Cells , 2018, Biotechnology progress.

[90]  T. Minamino Protein export through the bacterial flagellar type III export pathway. , 2014, Biochimica et biophysica acta.

[91]  Tsai-ping Li,et al.  High-level expression and secretion of recombinant mouse endostatin by Escherichia coli. , 2002, Protein expression and purification.

[92]  T. Palmer,et al.  Coordinating assembly and export of complex bacterial proteins , 2004, The EMBO journal.

[93]  J Gumpert,et al.  Use of cell wall-less bacteria (L-forms) for efficient expression and secretion of heterologous gene products. , 1998, Current opinion in biotechnology.

[94]  G Liu,et al.  Physiological role during export for the retardation of folding by the leader peptide of maltose-binding protein. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Benjamin Sommer Neue Strategien zur extrazellulären Produktion rekombinanter Proteine mit Escherichia coli , 2008 .

[96]  Min Zhang,et al.  Efficient Secretory Overexpression of Endoinulinase in Escherichia coli and the Production of Inulooligosaccharides , 2016, Applied Biochemistry and Biotechnology.

[97]  S. Weidtkamp‐Peters,et al.  Directionality of substrate translocation of the hemolysin A Type I secretion system , 2015, Scientific Reports.

[98]  Yuhong Zhou,et al.  Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss , 2016, Biotechnology progress.

[99]  T. van Laar,et al.  Essential validation methods for E. coli strains created by chromosome engineering , 2015, Journal of biological engineering.

[100]  N. Costantino,et al.  E. coli genome manipulation by P1 transduction. , 2007, Current protocols in molecular biology.

[101]  J. Lazzaroni,et al.  Cloning of the excC and excD genes involved in the release of periplasmic proteins by Escherichia coli K12 , 1989, Molecular and General Genetics MGG.

[102]  M. Gerstein,et al.  Use of Thioredoxin as a Reporter To Identify a Subset of Escherichia coli Signal Sequences That Promote Signal Recognition Particle-Dependent Translocation , 2005, Journal of bacteriology.

[103]  Frank Sargent,et al.  Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. , 2005, Current opinion in microbiology.

[104]  W. Lubitz,et al.  A novel method to recover inclusion body protein from recombinant E. coli fed-batch processes based on phage ΦX174-derived lysis protein E , 2017, Applied Microbiology and Biotechnology.

[105]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[106]  S. Udaka,et al.  Isolation and Characterization of Protein-leaky Mutants of Escherichia coli , 1978 .

[107]  C. Schwarz,et al.  Secretion of slow-folding proteins by a Type 1 secretion system , 2012, Bioengineered.

[108]  Jin-Ho Seo,et al.  Simple amino acid tags improve both expression and secretion of Candida antarctica lipase B in recombinant Escherichia coli , 2015, Biotechnology and bioengineering.

[109]  L. McIntosh,et al.  A protein export pathway involving Escherichia coli porins. , 2012, Structure.

[110]  C. Hoischen,et al.  Synthesis and secretion of recombinant penicillin G acylase in bacterial L‐forms , 1996, Journal of basic microbiology.

[111]  Zhan Zhou,et al.  New approach to achieve high-level secretory expression of heterologous proteins by using Tat signal peptide. , 2009, Protein and peptide letters.

[112]  F. Mergulhão,et al.  Periplasmic targeting of recombinant proteins in Escherichia coli. , 2007, Methods in molecular biology.

[113]  J. Smit,et al.  Secretion of the Caulobacter crescentusS-Layer Protein: Further Localization of the C-Terminal Secretion Signal and Its Use for Secretion of Recombinant Proteins , 2000, Journal of bacteriology.

[114]  P. Adriaensens,et al.  Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized nanobodies using expressed protein ligation. , 2017, Protein expression and purification.

[115]  A. Driessen,et al.  Protein translocation across the bacterial cytoplasmic membrane. , 2008, Annual review of biochemistry.

[116]  R. Lloubès,et al.  Escherichia coli tol-pal Mutants Form Outer Membrane Vesicles , 1998, Journal of bacteriology.

[117]  M. Gidekel,et al.  Subset of Hybrid Eukaryotic Proteins Is Exported by the Type I Secretion System of Erwinia chrysanthemi , 2001, Journal of bacteriology.

[118]  M. Akhtar,et al.  Expression and rapid purification of recombinant biologically active ovine growth hormone with DsbA targeting to Escherichia coli inner membrane , 2015, Applied Microbiology and Biotechnology.

[119]  Jian Chen,et al.  Extracellular Location of Thermobifida fusca Cutinase Expressed in Escherichia coli BL21(DE3) without Mediation of a Signal Peptide , 2013, Applied and Environmental Microbiology.

[120]  Lingqia Su,et al.  Extracellular expression of Thermobifida fusca cutinase with pelB signal peptide depends on more than type II secretion pathway in Escherichia coli. , 2015, Journal of biotechnology.

[121]  An engineered autotransporter-based surface expression vector enables efficient display of Affibody molecules on OmpT-negative E. coli as well as protease-mediated secretion in OmpT-positive strains , 2014, Microbial Cell Factories.

[122]  J. Lazzaroni,et al.  tolA, tolB and excC, three cistrons involved in the control of pleiotropic release of periplasmic proteins by Escherichia coli K12 , 1987, Molecular and General Genetics MGG.

[123]  T. Brüser,et al.  Conservation and Variation between Rhodobacter capsulatus and Escherichia coli Tat Systems , 2006, Journal of bacteriology.

[124]  A. Gooley,et al.  Proteomic analysis of the Escherichia coli outer membrane. , 2000, European journal of biochemistry.

[125]  H. C. Wu,et al.  Prolipoprotein modification and processing in Escherichia coli. A unique secondary structure in prolipoprotein signal sequence for the recognition by glyceryl transferase. , 1984, European journal of biochemistry.

[126]  E. Flaschel,et al.  Factors that influence the extracellular expression of streptavidin in Escherichia coli using a bacteriocin release protein , 2008, Applied Microbiology and Biotechnology.

[127]  S. Mizushima,et al.  The requirement of a positive charge at the amino terminus can be compensated for by a longer central hydrophobic stretch in the functioning of signal peptides. , 1992, The Journal of biological chemistry.

[128]  H. Grubmüller,et al.  TatBC-Independent TatA/Tat Substrate Interactions Contribute to Transport Efficiency , 2015, PloS one.

[129]  I. Beacham,et al.  Whole genome analysis reveals a high incidence of non-optimal codons in secretory signal sequences of Escherichia coli. , 2004, Biochemical and biophysical research communications.

[130]  O. Francetic,et al.  Type II secretion system: a magic beanstalk or a protein escalator. , 2014, Biochimica et biophysica acta.

[131]  H. C. Wu,et al.  Physiological characterization of an Escherichia coli mutant altered in the structure of murein lipoprotein , 1978, Journal of bacteriology.

[132]  J. Beckwith,et al.  Effects of signal sequence mutations on the kinetics of alkaline phosphatase export to the periplasm in Escherichia coli , 1986, Journal of bacteriology.

[133]  L. Rothfield,et al.  Leakage of Periplasmic Enzymes by Mutants of Escherichia coli and Salmonella typhimurium: Isolation of “Periplasmic Leaky” Mutants , 1972, Journal of bacteriology.

[134]  C. Qiao,et al.  Export of methyl parathion hydrolase to the periplasm by the twin-arginine translocation pathway in Escherichia coli. , 2009, Journal of agricultural and food chemistry.

[135]  A. Pugsley,et al.  The cryptic general secretory pathway (gsp) operon of Escherichia coli K-12 encodes functional proteins , 1996, Journal of bacteriology.

[136]  P. Andersen,et al.  A structurally informed autotransporter platform for efficient heterologous protein secretion and display , 2012, Microbial Cell Factories.

[137]  Miroslaw Cygler,et al.  Genetic selection designed to stabilize proteins uncovers a chaperone called Spy , 2011, Nature Structural &Molecular Biology.

[138]  Oliver Spadiut,et al.  A novel toolbox for E. coli lysis monitoring , 2016, Analytical and Bioanalytical Chemistry.

[139]  M. Jennings,et al.  Secretory signal sequence non-optimal codons are required for expression and export of beta-lactamase. , 2008, Biochemical and biophysical research communications.

[140]  M. Westermann,et al.  Novel Bacterial Membrane Surface Display System Using Cell Wall-Less L-Forms of Proteus mirabilis and Escherichia coli , 2002, Applied and Environmental Microbiology.

[141]  Y. Ni,et al.  Extracellular recombinant protein production from Escherichia coli , 2009, Biotechnology Letters.

[142]  Hyun‐dong Shin,et al.  Extracellular recombinant protein production from an Escherichia coli lpp deletion mutant , 2008, Biotechnology and bioengineering.

[143]  R. Portalier,et al.  Optimized extracellular production of alkaline phosphatase by lky mutants of Escherichia coli K12 , 2004, Applied Microbiology and Biotechnology.

[144]  P. Mosoni,et al.  Differential translocation of green fluorescent protein fused to signal sequences of Ruminococcus albus cellulases by the Tat and Sec pathways of Escherichia coli. , 2009, FEMS microbiology letters.

[145]  Farren J. Isaacs,et al.  Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA , 2014, Nature Protocols.

[146]  Lutz Schmitt,et al.  Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (Review) , 2005, Molecular membrane biology.

[147]  C. Chou,et al.  Enhancing functional expression of heterologous lipase B in Escherichia coli by extracellular secretion , 2010, Journal of Industrial Microbiology & Biotechnology.

[148]  J. Xiang,et al.  One Hundred Seventy-Fold Increase in Excretion of an FV Fragment-Tumor Necrosis Factor Alpha Fusion Protein (sFV/TNF-α) fromEscherichia coli Caused by the Synergistic Effects of Glycine and Triton X-100 , 1998, Applied and Environmental Microbiology.

[149]  G. Braus,et al.  One Juliet and four Romeos: VeA and its methyltransferases , 2015, Front. Microbiol..

[150]  S. Dübel,et al.  SRP and Sec pathway leader peptides for antibody phage display and antibody fragment production in E. coli. , 2008, New biotechnology.

[151]  B. Kenny,et al.  Analysis of the haemolysin transport process through the secretion from Escherichia coli of PCM, CAT or β‐galactosidase fused to the Hly C‐terminal signal domain , 1991, Molecular microbiology.

[152]  F. Baneyx,et al.  Recombinant protein folding and misfolding in Escherichia coli , 2004, Nature Biotechnology.

[153]  Screening for conditions of enhanced production of a recombinant β-glucanase secreted into the medium by Escherichia coli , 2010, Biotechnology Letters.

[154]  J. Beckwith The Sec-dependent pathway. , 2013, Research in microbiology.

[155]  Urs Brugger,et al.  Automated Counting of Bacterial Colony Forming Units on Agar Plates , 2012, PloS one.

[156]  T. Shiba,et al.  Improved Secretory Production of Recombinant Proteins by Random Mutagenesis of hlyB, an Alpha-Hemolysin Transporter from Escherichia coli , 2005, Applied and Environmental Microbiology.

[157]  M. Moo-young,et al.  Integrated development of an effective bioprocess for extracellular production of penicillin G acylase in Escherichia coli and its subsequent one-step purification. , 2012, Journal of biotechnology.

[158]  T. Brüser The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production , 2007, Applied Microbiology and Biotechnology.

[159]  H. Yanagi,et al.  Overproduction of Bacterial Protein Disulfide Isomerase (DsbC) and Its Modulator (DsbD) Markedly Enhances Periplasmic Production of Human Nerve Growth Factor in Escherichia coli * , 2001, The Journal of Biological Chemistry.

[160]  David S. Weiss,et al.  The Escherichia coli Cell Division Protein and Model Tat Substrate SufI (FtsP) Localizes to the Septal Ring and Has a Multicopper Oxidase-Like Structure , 2009, Journal of molecular biology.

[161]  N. Mackman,et al.  Release of a chimeric protein into the medium from Escherichia coli using the C‐terminal secretion signal of haemolysin. , 1987, EMBO Journal.

[162]  R. Jalalirad Selective and efficient extraction of recombinant proteins from the periplasm of Escherichia coli using low concentrations of chemicals , 2013, Journal of Industrial Microbiology & Biotechnology.

[163]  R. Illias,et al.  Novel synthetic signal peptides for the periplasmic secretion of green fluorescent protein in Escherichia coli , 2013, Annals of Microbiology.

[164]  Ryan J Schulze,et al.  Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG–SecDF–YajC–YidC , 2014, Proceedings of the National Academy of Sciences.

[165]  W. Vollmer,et al.  Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. , 2008, Biochimica et biophysica acta.

[166]  R. Kontermann,et al.  Process development of periplasmatically produced single chain fragment variable against epidermal growth factor receptor in Escherichia coli. , 2014, Journal of biotechnology.

[167]  Zoya Ignatova,et al.  Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery. , 2002, Biochemical and biophysical research communications.

[168]  Samuel I. Miller,et al.  LPS, TLR4 and infectious disease diversity , 2005, Nature Reviews Microbiology.

[169]  Y. Moon,et al.  Export of recombinant proteins in Escherichia coli using ABC transporter with an attached lipase ABC transporter recognition domain (LARD) , 2009, Microbial cell factories.

[170]  Christoph Herwig,et al.  Substrate oscillations boost recombinant protein release from Escherichia coli , 2014, Bioprocess and Biosystems Engineering.

[171]  George Georgiou,et al.  Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[172]  A. Driessen,et al.  The bacterial Sec-translocase: structure and mechanism , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[173]  V. de Lorenzo,et al.  Formation of disulphide bonds during secretion of proteins through the periplasmic‐independent type I pathway , 2001, Molecular microbiology.

[174]  K. Omori,et al.  The ABC-exporter genes involved in the lipase secretion are clustered with the genes for lipase, alkaline protease, and serine protease homologues in Pseudomonas fluorescens no. 33. , 1999, Biochimica et biophysica acta.

[175]  Adam C. Fisher,et al.  An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway. , 2007, Journal of molecular biology.

[176]  O. Spadiut,et al.  How to trigger periplasmic release in recombinant Escherichia coli: A comparative analysis , 2017, Engineering in life sciences.

[177]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[178]  Roshani Patel,et al.  Protein transport by the bacterial Tat pathway. , 2014, Biochimica et biophysica acta.

[179]  C. Schwarz,et al.  Using an E. coli Type 1 secretion system to secrete the mammalian, intracellular protein IFABP in its active form. , 2012, Journal of biotechnology.

[180]  W. D. de Vos,et al.  A simple and fast method for determining colony forming units , 2008, Letters in applied microbiology.

[181]  L. Schmitt,et al.  The Type 1 secretion pathway - the hemolysin system and beyond. , 2014, Biochimica et biophysica acta.

[182]  Matthias Müller,et al.  Twin-arginine-dependent translocation of folded proteins , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[183]  Mark R Marten,et al.  Proteomic analysis of extracellular proteins from Escherichia coli W3110. , 2006, Journal of proteome research.

[184]  Y. Zhou,et al.  Enhancing full-length antibody production by signal peptide engineering , 2016, Microbial Cell Factories.

[185]  H. Nakano,et al.  Extracellular production of phospholipase A2 from Streptomyces violaceoruber by recombinant Escherichia coli. , 2012, Protein expression and purification.

[186]  G. Schulz The structure of bacterial outer membrane proteins. , 2002, Biochimica et biophysica acta.

[187]  Christopher E. Jones,et al.  Signal sequence non-optimal codons are required for the correct folding of mature maltose binding protein. , 2010, Biochimica et biophysica acta.

[188]  J. Choi,et al.  Secretory and extracellular production of recombinant proteins using Escherichia coli , 2004, Applied Microbiology and Biotechnology.

[189]  D. Haltrich,et al.  OmpA signal peptide leads to heterogenous secretion of B. subtilis chitosanase enzyme from E. coli expression system , 2016, SpringerPlus.

[190]  I. Holland,et al.  Heterologous protein secretion and the versatile Escherichia coli haemolysin translocator. , 1994, Trends in biotechnology.

[191]  C. Cambillau,et al.  Structural biology of type VI secretion systems , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[192]  Yulin Chen,et al.  Efficient extracellular production of κ-carrageenase in Escherichia coli: effects of wild-type signal sequence and process conditions on extracellular secretion. , 2014, Journal of biotechnology.

[193]  F. Casse,et al.  Morphological mutants of Escherichia coli K12 , 1974, Molecular and General Genetics MGG.

[194]  Y. Moon,et al.  Identification of the minimal region in lipase ABC transporter recognition domain of Pseudomonas fluorescens for secretion and fluorescence of green fluorescent protein , 2012, Microbial Cell Factories.

[195]  P. Cegłowski,et al.  Secretion of streptokinase fusion proteins from Escherichia coli cells through the hemolysin transporter. , 1995, Gene.

[196]  G. Georgiou,et al.  Phage Shock Protein PspA of Escherichia coli Relieves Saturation of Protein Export via the Tat Pathway , 2004, Journal of bacteriology.

[197]  Ru-Meng Bao,et al.  An efficient protocol to enhance the extracellular production of recombinant protein from Escherichia coli by the synergistic effects of sucrose, glycine, and Triton X-100. , 2016, Protein expression and purification.

[198]  K. Omori,et al.  Cloning and Characterization of thePseudomonas fluorescens ATP-Binding Cassette Exporter, HasDEF, for the Heme Acquisition Protein HasA , 1999, Journal of bacteriology.

[199]  R. Freedman,et al.  High‐level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin‐arginine translocation system in Escherichia coli , 2013, The FEBS journal.

[200]  C. D. Miller,et al.  Translocation of green fluorescent protein by comparative analysis with multiple signal peptides , 2012, Biotechnology journal.

[201]  G. Larsson,et al.  Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage , 2002, Applied Microbiology and Biotechnology.

[202]  Yan Zhang,et al.  Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. , 2015, Metabolic engineering.

[203]  J. Collet,et al.  Folding mechanisms of periplasmic proteins. , 2014, Biochimica et biophysica acta.

[204]  Lingqia Su,et al.  Enhanced extracellular production of recombinant proteins in Escherichia coli by co-expression with Bacillus cereus phospholipase C , 2017, Microbial Cell Factories.

[205]  W. Goebel,et al.  Change in the cellular localization of alkaline phosphatase by alteration of its carboxy-terminal sequence , 1990, Molecular and General Genetics MGG.

[206]  Y. Hirota,et al.  Escherichia coliにおける細胞分裂の過程 ムレイン‐リポたんぱく質を欠如するE. coliの突然変異体 , 1977 .

[207]  M. Jazini,et al.  Effects of temperature shifts and oscillations on recombinant protein production expressed in Escherichia coli , 2013, Bioprocess and Biosystems Engineering.

[208]  J. Lazzaroni,et al.  Genetic and biochemical characterization of periplasmic-leaky mutants of Escherichia coli K-12 , 1981, Journal of bacteriology.

[209]  H. Bernstein,et al.  The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[210]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[211]  W. Lubitz,et al.  Altered temperature induction sensitivity of the lambda pR/cI857 system for controlled gene E expression in Escherichia coli. , 1999, FEMS microbiology letters.

[212]  Byung Hoon Jo,et al.  Versatile signal peptide of Flavobacterium‐originated organophosphorus hydrolase for efficient periplasmic translocation of heterologous proteins in Escherichia coli , 2016, Biotechnology progress.

[213]  U. Bläsi,et al.  A bifunctional vector system for controlled expression and subsequent release of the cloned gene product by øX174 lysis protein-E , 1990, Applied Microbiology and Biotechnology.

[214]  S. Karamanou,et al.  SecA-mediated targeting and translocation of secretory proteins. , 2014, Biochimica et biophysica acta.

[215]  T. Silhavy,et al.  Advances in understanding bacterial outer-membrane biogenesis , 2006, Nature Reviews Microbiology.

[216]  V. de Lorenzo,et al.  Secretion of proteins with dimerization capacity by the haemolysin type I transport system of Escherichia coli , 2004, Molecular microbiology.

[217]  U. Henning,et al.  Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins , 1978, Journal of bacteriology.

[218]  Miguel A. de Pedro,et al.  Structural constraints and dynamics of bacterial cell wall architecture , 2015, Front. Microbiol..

[219]  R. Illias,et al.  Optimization of a Bacillus sp signal peptide for improved recombinant protein secretion and cell viability in Escherichia coli , 2012, Bioengineered.

[220]  Colin Robinson,et al.  Escherichia coli “TatExpress” strains super‐secrete human growth hormone into the bacterial periplasm by the Tat pathway , 2017, Biotechnology and bioengineering.

[221]  W. Wickner,et al.  Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme , 1997, The EMBO journal.

[222]  P. Delepelaire Type I secretion in gram-negative bacteria. , 2004, Biochimica et biophysica acta.

[223]  S. Smits,et al.  The Rate of Folding Dictates Substrate Secretion by the Escherichia coli Hemolysin Type 1 Secretion System* , 2010, The Journal of Biological Chemistry.

[224]  W. Goebel,et al.  Analysis of the haemolysin secretion system by PhoA-HlyA fusion proteins , 1990, Molecular and General Genetics MGG.

[225]  George Georgiou,et al.  Export Pathway Selectivity of Escherichia coli Twin Arginine Translocation Signal Peptides* , 2007, Journal of Biological Chemistry.

[226]  Sang Yup Lee,et al.  Comparison of the extracellular proteomes of Escherichia coli B and K‐12 strains during high cell density cultivation , 2008, Proteomics.

[227]  Philipp Stiefel,et al.  Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide , 2015, BMC Microbiology.

[228]  M. Paetzel,et al.  Signal peptidases. , 2002, Chemical reviews.

[229]  J. Weiner,et al.  Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis. , 2008, Biochimica et biophysica acta.

[230]  R. Freedman,et al.  High‐yield export of a native heterologous protein to the periplasm by the tat translocation pathway in Escherichia coli , 2012, Biotechnology and bioengineering.

[231]  K. Friehs,et al.  Constitutive production and efficient secretion of soluble full-length streptavidin by an Escherichia coli 'leaky mutant'. , 2016, Journal of biotechnology.

[232]  Jing Chen,et al.  Extracellular overexpression of recombinant Thermobifida fusca cutinase by alpha-hemolysin secretion system in E. coli BL21(DE3) , 2012, Microbial Cell Factories.

[233]  Z. Ignatova,et al.  Improvement of Posttranslational Bottlenecks in the Production of Penicillin Amidase in Recombinant Escherichiacoli Strains , 2003, Applied and Environmental Microbiology.

[234]  Masaru Tomita,et al.  Update on the Keio collection of Escherichia coli single-gene deletion mutants , 2009, Molecular systems biology.