Physics and engineering of singlet delta oxygen production in low-temperature plasma

An overview is presented of experimental and theoretical research in the field of physics and engineering of singlet delta oxygen (SDO) production in low-temperature plasma of various electric discharges. Attention is paid mainly to the SDO production with SDO yield adequate for the development of an electric discharge oxygen–iodine laser (DOIL). The review comprises a historical sketch describing the main experimental results on SDO physics in low-temperature plasma obtained since the first detection of SDO in electric discharge in the 1950s and the first attempt to launch a DOIL in the 1970s up to the mid-1980s when several research groups started their activity aimed at DOIL development, stimulated by success in the development of a chemical oxygen–iodine laser (COIL). A detailed analysis of theoretical and experimental research on SDO production in electric discharge from the mid-1980s to the present, when the first DOIL has been launched, is given. Different kinetic models of oxygen low-temperature plasma are compared with the model developed by the authors. The latter comprises electron kinetics based on the accompanying solution of the electron Boltzmann equation, plasma chemistry including reactions of excited molecules and numerous ion–molecular reactions, thermal energy balance and electric circuit equation. The experimental part of the overview is focused on the experimental methods of SDO detection including experiments on the measurements of the Einstein coefficient for SDO transition and experimental procedures of SDO production in self-sustained and non-self-sustained discharges and analysis of different plasma-chemical processes occurring in oxygen low-temperature plasma which brings limitation to the maximum SDO yield and to the lifetime of the SDO in an electric discharge and its afterglow. Quite recently obtained results on gain and output characteristics of DOIL and some projects aimed at the development of high-power DOIL are discussed.

[1]  David L. Carroll,et al.  Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O 2 Ña 1 DÖ produced in an electric discharge , 2005 .

[2]  R. Hudson,et al.  Metastable Oxygen Molecules Produced by Electrical Discharges , 1956 .

[3]  Gordon D. Hager,et al.  Electron-beam sustained discharge in oxygen gas mixtures: singlet delta oxygen production for oxygen-iodine laser , 2004, SPIE High-Power Laser Ablation.

[4]  Otomar Spalek,et al.  Attempt to verify experimental Einstein A-coefficient used for O2(1Δg) determination in COIL , 1998, International Symposium on High Power Laser Systems and Applications.

[5]  Susan J. Thornton Airborne laser: the integration challenge , 2005, International Symposium on High Power Laser Systems and Applications.

[6]  M. Pinheiro,et al.  Electron and heavy-particle kinetics in the low pressure oxygen positive column , 1991 .

[7]  E. H. Fink,et al.  Collision-induced emission of O2(b1Σ a1Δg) in the gas phase† , 1991 .

[8]  J. Craggs,et al.  Measurements of Attachment Coefficients in Oxygen using an Electron Filter Technique , 1961 .

[9]  I. A. Kossyi,et al.  Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures , 1992 .

[10]  D. Rapp,et al.  Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization , 1965 .

[11]  Mark J. Kushner,et al.  O2(Δ1) production in He∕O2 mixtures in flowing low pressure plasmas , 2004 .

[12]  A. Vallance Jones,et al.  1Δg-3Σg- O2 Infrared emission band in the twilight airglow spectrum , 1958 .

[13]  W. H. Williams,et al.  Lasing in atomic iodine with a nuclear‐pumped XeBr* flash lamp , 1993 .

[14]  J. W. Gallagher,et al.  Critical Survey of Data on the Spectroscopy and Kinetics of Ozone in the Mesosphere and Thermosphere , 1987 .

[15]  M. Kasha,et al.  THE PHYSICS, CHEMISTRY, AND BIOLOGY, OF SINGLET MOLECULAR OXYGEN * , 1970 .

[16]  D. Carroll,et al.  Studies of CW laser oscillation on the 1315-nm transition of atomic iodine pumped by O/sub 2/(a/sup 1//spl Delta/) produced in an electric discharge , 2005, IEEE Journal of Quantum Electronics.

[17]  G. T. Fraser,et al.  Rotational Line Strengths and Self-Pressure-Broadening Coefficients for the 1.27-microm, a (1)D(g)-X (3)?(g)(-), v = 0-0 Band of O(2). , 1998, Applied optics.

[18]  Olga Proshina,et al.  Singlet oxygen generation in O2 flow excited by RF discharge: I. Homogeneous discharge mode: α-mode , 2005 .

[19]  Kentaro Abe,et al.  Development of supersonic oxygen-iodine laser by RF discharge , 2007, International Symposium on High Power Laser Systems and Applications.

[20]  V. C. Ikonnikov,et al.  Mathematical modeling of singlet-oxygen formation in oxygen dc glow discharge , 2005, International Symposium on High Power Laser Systems and Applications.

[21]  J. T. Verdeyen,et al.  Recent work on the development of an electric-discharge oxygen-iodine laser , 2003, International Symposium on High Power Laser Systems and Applications.

[22]  A A Ionin,et al.  Non-self-sustained electric discharge in oxygen gas mixtures: singlet delta oxygen production , 2003 .

[23]  V. Baev,et al.  Laser intracavity absorption spectroscopy , 1999 .

[24]  Seth A. Norberg,et al.  Singlet oxygen generation in a high pressure non-self-sustained electric discharge , 2005 .

[25]  M. Péalat,et al.  Spectroscopic temperature measurements in oxygen discharges , 1991 .

[26]  A. Rakhimov,et al.  Nonlocal nature of the electron energy spectrum in a glow-discharge in pure O2: II. Actinometry of O(3P) atoms in a plasma at low gas pressures , 2000 .

[27]  H. V. Lilenfeld,et al.  Investigation of the temperature dependence of the excitation mechanism of the oxygeniodine chemical laser , 1982 .

[28]  A. V. Ivanov,et al.  LASERS IN MEDICINE: Light-oxygen effect in cells and its potential applications in tumour therapy (review) , 1999 .

[29]  L F Rubin,et al.  Direct Measurement of O(2)(a(1)D) and O(2)(X(3)?) in Chemical Oxygen-Iodine Lasers with use of Spontaneous Raman Imaging. , 1998, Applied optics.

[30]  Yuan-Pern Lee,et al.  Intensities of lines in the band a 1Δg (v′= 0) − X3Σ−g (v″ = 0) of 16O2 in absorption , 1992 .

[31]  R. Schmidt,et al.  Collision-Induced Radiative Transitions b1.SIGMA.g+ .fwdarw. a1.DELTA.g, b1.SIGMA.g+ .fwdarw. X3.SIGMA.g-, and a1.DELTA.g .fwdarw. X3.SIGMA.g- of O2 , 1995 .

[32]  N. P. Vagin,et al.  Breakdown of highly excited oxygen in a DC electric field , 2000 .

[33]  David A. Newnham,et al.  Integrated absorption intensity and Einstein coefficients for the O2 a1Δg-X3Σg- (0,0) transition: a comparison of cavity ringdown and high resolution Fourier transform spectroscopy with a long-path absorption cell , 1999 .

[34]  Michael C. Heaven,et al.  Important kinetic effects in the hybrid ElectricOIL system , 2006, SPIE High-Power Laser Ablation.

[35]  N. P. Vagin,et al.  Glow discharge in singlet oxygen , 2003 .

[36]  M. Fujii,et al.  Generation of singlet oxygen at room temperature mediated by energy transfer from photoexcited porous Si , 2004 .

[37]  Michael C. Heaven,et al.  I* kinetics of relevance to discharge-driven COIL systems , 2004, SPIE High-Power Laser Ablation.

[38]  R. Derwent,et al.  The excitation of iodine by singlet molecular oxygen , 1970 .

[39]  Pavel A. Mikheyev,et al.  Exited oxygen in glow discharge afterglow , 1999, Photonics West.

[40]  K. Mašek,et al.  Numerical analysis of glow discharge in oxygen , 1979 .

[41]  E. Tollefson,et al.  The Reaction of Atomic Hydrogen with Acetylene , 1948 .

[42]  R. J. Richardson,et al.  An efficient singlet oxygen generator for chemically pumped iodine lasers , 1981 .

[43]  Josef Schmiedberger,et al.  Hybrid oxygen-iodine laser with a discharge singlet oxygen generator , 2000, SPIE High-Power Laser Ablation.

[44]  Aravinda Kar,et al.  Cutting performance of a chemical oxygen-iodine laser on aerospace and industrial materials , 1999 .

[45]  Nikolai N. Yuryshev,et al.  Plasma chemical oxygen-iodine laser: problems of development , 2002, SPIE LASE.

[46]  N. P. Vagin,et al.  Singlet oxygen in the low-temperature plasma of an electron-beam-sustained discharge , 2006 .

[47]  Alan E. Hill Current advances toward the development of an electric-controlled avalanche O21Δ generator-based oxygen-iodine laser , 2004, SPIE High-Power Laser Ablation.

[48]  R. Derwent,et al.  Excitation of iodine by singlet molecular oxygen. Part 2.—Kinetics of the excitation of the iodine atoms , 1972 .

[49]  Josef Schmiedberger,et al.  The research on discharge oxygen iodine laser in Japan , 2004, SPIE High-Power Laser Ablation.

[50]  Hiroo Fujii,et al.  Current status of industrial COIL development , 1993, Other Conferences.

[51]  Skip Williams,et al.  Quantitative detection of singlet O2 by cavity-enhanced absorption. , 2004, Optics letters.

[52]  M. Pinheiro,et al.  Spectroscopy and Kinetics of an Oxygen Glow Discharge , 1990 .

[53]  J. Rees The Behaviour of Free and Attached Electrons in Oxygen , 1965 .

[54]  Measurement of the O2 (b1Σg+ → a1Δg) transition probability by the method of intracavity laser spectroscopy , 2005 .

[55]  Earl C. Beaty,et al.  An Annotated Compilation and Appraisal of Electron Swarm Data in Electronegative Gases , 1983 .

[56]  David L. Carroll,et al.  Experimental effects of atomic oxygen on the development of an electric discharge oxygen iodine laser , 2005, International Symposium on High Power Laser Systems and Applications.

[57]  N. A. Raspopov,et al.  Direct detection of singlet oxygen O2(a1 Δg) by absorption at the a1 Δg → b1 Σg+ transition using intracavity laser spectroscopy , 2001 .

[58]  David L. Carroll,et al.  Measurement of positive gain on the 1315nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge , 2004 .

[59]  Masamori Endo,et al.  Industrial chemical oxygen-iodine laser at Tokai University , 2000, Advanced High-Power Lasers and Applications.

[60]  Seonkyung Lee,et al.  Spectroscopic studies of a prototype electrically pumped COIL system , 2004, SPIE LASE.

[61]  Josef Schmiedberger,et al.  RF plasma jet generator of singlet delta oxygen for oxygen-iodine laser , 2001, International Symposium on High Power Laser Systems and Applications.

[62]  A. Napartovich,et al.  Electric generators of singlet delta oxygen for an oxygen-iodine laser , 2006 .

[63]  David J. Nesbitt,et al.  The Einstein Coefficient for spontaneous emission of the O2 (a¹Δg) state , 1995 .

[64]  A. Rakhimov,et al.  Generation of singlet oxygen for an oxygen—iodine laser in a radio-frequency discharge , 2005 .

[65]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[66]  E. A. Ogryzlo,et al.  Some New Emission Bands of Molecular Oxygen , 1964 .

[67]  Anatoly P. Napartovich,et al.  Discharge production of the singlet delta oxygen for an iodine laser , 2001 .

[68]  S. J. Arnold,et al.  Some Novel Energy‐Pooling Processes Involving O2(1Δg) , 1966 .

[69]  R. Wayne REACTIONS OF SINGLET MOLECULAR OXYGEN IN THE GAS PHASE , 1985 .

[70]  R. Crompton,et al.  A New Method for Measuring the Attachment of Slow Electrons in Gases , 1959 .

[71]  D. Kearns,et al.  Physical and chemical properties of singlet molecular oxygen , 1971 .

[72]  Alan E. Hill,et al.  Computer modeling of an electric controlled avalanche O21Δ generator plasma , 2004, SPIE High-Power Laser Ablation.

[73]  Josef Schmiedberger,et al.  Improved rf plasma jet generation of singlet delta oxygen , 1997, International Symposium on High Power Laser Systems and Applications.

[74]  David L. Carroll,et al.  ElectriCOIL: an advanced chemical iodine laser concept , 2001, International Symposium on High Power Laser Systems and Applications.

[75]  George H. Miley Nuclear pumping of the iodine laser revisited , 1998, Other Conferences.

[76]  Michael C. Heaven,et al.  Kinetic studies for advanced iodine laser concepts , 2003, SPIE LASE.

[77]  Josef Schmiedberger,et al.  Radio-frequency plasma jet generator of singlet delta oxygen with high yield , 2001 .

[78]  R. Derwent,et al.  The radiative lifetime of the metastable iodine atom I(52P1/2) , 1971 .

[79]  L F Rubin,et al.  Measurement of the Raman cross section of O(2)(a(1)D(g)). , 1997, Optics letters.

[80]  E. A. Ogryzlo,et al.  THE STUDY OF ELECTRICALLY DISCHARGED O2 BY MEANS OF AN ISOTHERMAL CALORIMETRIC DETECTOR , 1959 .

[81]  Y. Mankelevich,et al.  Kinetics of in oxygen RF discharges , 2005 .

[82]  Valeriy N. Azyazov,et al.  Chemical kinetics of discharge-driven oxygen-iodine lasers , 2007, International Symposium on High Power Laser Systems and Applications.

[83]  Anatoly P. Napartovich,et al.  O2(α1Δg) concentration measuring by intracavity laser spectroscopy of b1Σg+-α1Δg transition , 2005, International Symposium on High Power Laser Systems and Applications.

[84]  Y. Podmar’kov,et al.  Oxygen–iodine laser with a photodissociation source of excited O2(a1Δg) oxygen , 1989 .

[85]  Joseph T. Verdeyen,et al.  Diagnostic development for the ElectriCOIL flow system , 2002, SPIE LASE.

[86]  Skip Williams,et al.  Quantitative determination of singlet oxygen density and temperature for Oxygen-Iodine Laser Applications , 2004 .

[87]  Masamori Endo,et al.  Development of a prototype COIL for decommissioning and dismantlement , 2001, International Symposium on High Power Laser Systems and Applications.

[88]  Juergen Handke,et al.  Measurement of molecular electronic ground state oxygen O2(3Σ) in COIL device , 2005, International Symposium on High Power Laser Systems and Applications.

[89]  Seonkyung Lee,et al.  Advanced Diagnostics for COIL and DOIL , 2004, SPIE High-Power Laser Ablation.

[90]  E. A. Ogryzlo,et al.  Reactions of O2(1Δg) and O2(1Σ+g) , 1964 .

[91]  Robert F. Walter,et al.  High-power laser rock cutting and drilling in mining operations: initial feasibility tests , 2000, SPIE High-Power Laser Ablation.

[92]  D. Carroll,et al.  Modeling of the ElectriCOIL system , 2003 .

[93]  Glen P. Perram,et al.  Singlet oxygen kinetics in a double microwave discharge , 2004, SPIE High-Power Laser Ablation.

[94]  R. Wayne,et al.  The absolute cross section for photoionization of O2(1Δ g ) , 1970 .

[95]  D. J. Economou,et al.  Negative ion destruction by O(3P) atoms and O2(a 1Δg) molecules in an oxygen plasma , 2005 .

[96]  Hiroo Fujii,et al.  Development of hybrid oxygen-iodine laser , 2000, Advanced High-Power Lasers and Applications.

[97]  Andrew D. Palla,et al.  Development of the electric discharge oxygen-iodine laser , 2006, International Symposium on High Power Laser Systems and Applications.

[98]  T. Slanger,et al.  Production of O2(a 1Δg) by oxygen atom recombination on a Pyrex surface , 1981 .

[99]  V. Egorov,et al.  Singlet oxygen production and quenching mechanisms in travelling microwave discharges , 2004 .

[100]  H. Brunet,et al.  Study of O2 (1Δ) production in a glow discharge at large molar flow rates , 1983 .

[101]  Andrei A. Ionin,et al.  The methods of singlet oxygen detection for DOIL program , 2004, SPIE High-Power Laser Ablation.

[102]  Liang-Bih Lin,et al.  Linestrengths of the band a1Δg(v' = 0)-X<3Σ-g(v'' = 0) of 16O2 , 1988 .

[103]  David L. Carroll,et al.  Continuous-wave laser oscillation in subsonic flow on the 1315nm atomic iodine transition pumped by electric discharge produced O2(aΔ1) , 2006 .

[104]  Alan E. Hill,et al.  Laser plasma electrical excitation methods: their properties, techniques, and specific applications , 2002, Atomic and Molecular Pulsed Lasers.

[105]  Richard M. Badger,et al.  Absolute Intensities of the Discrete and Continuous Absorption Bands of Oxygen Gas at 1.26 and 1.065 μ and the Radiative Lifetime of the 1Δg State of Oxygen , 1965 .

[106]  Charles A. Helms,et al.  Quantitative determination of oxygen yield in a chemical oxygen-iodine laser , 1998, Photonics West.

[107]  Joseph T. Verdeyen,et al.  Electrodynamic modeling of the ElectriCOIL system , 2003, SPIE LASE.

[108]  Gordon D. Hager,et al.  Singlet delta oxygen production in e-beam sustained discharge: theory and experiment , 2005, International Symposium on High Power Laser Systems and Applications.

[109]  Paul J. Crutzen,et al.  Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement I CODATA Task Group on Chemical Kinetics , 1982 .

[110]  Robert F. Walter,et al.  Industrial iodine lasers: an untapped military resource , 2001, International Symposium on High Power Laser Systems and Applications.

[111]  G. Gousset,et al.  Experimental study of a d.c. oxygen glow discharge by V.U.V. absorption spectroscopy , 1987 .

[112]  D. S. Stafford,et al.  O2(Δ1) production in flowing He∕O2 plasmas. II. Two-dimensional modeling , 2005 .

[113]  John Vetrovec Prospects for an industrial chemical oxygen-iodine laser , 1997, International Symposium on High Power Laser Systems and Applications.

[114]  Boris A. Vyskubenko,et al.  Active medium gain study of electric-discharge oxygen-iodine laser , 2007, International Symposium on High Power Laser Systems and Applications.

[115]  Josef Schmiedberger,et al.  RF plasma jet generator of singlet delta oxygen and RF discharge pre-dissociation of iodine for oxygen-iodine laser at lowered temperature , 2005, International Symposium on High Power Laser Systems and Applications.

[116]  L. F. Phillips,et al.  Chemistry of the Atmosphere , 1976 .

[117]  D. S. Stafford,et al.  O2(Δ1) production in flowing He∕O2 plasmas. I. Axial transport and pulsed power formats , 2005 .

[118]  K. S. Klopovskiy,et al.  On the possibility of O2(a 1Δg) production by a non-self-sustained discharge for oxygen-iodine laser pumping , 2004 .

[119]  Yoshiharu Nakamura,et al.  Measurement of drift velocity and longitudinal diffusion coefficient of electrons in pure oxygen and in oxygen-argon mixtures , 1998 .

[120]  F. Kaufman The air afterglow and its use in the study of some reactions of atomic oxygen , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[121]  Paul H. Krupenie The Spectrum of Molecular Oxygen , 1972 .

[122]  K. S. Klopovsky,et al.  New mechanism of O2(a1Δg) quenching in oxygen-contained plasmas , 2005, International Symposium on High Power Laser Systems and Applications.

[123]  T. Slanger,et al.  Surface chemistry of metastable oxygen. II. Destruction of O2(a 1Δg) , 1989 .

[124]  Seonkyung Lee,et al.  Next generation diagnostics for COIL: new approaches for measuring critical parameters , 2005, International Symposium on High Power Laser Systems and Applications.

[125]  Mikhail P. Frolov,et al.  Singlet delta oxygen production in a slab discharge in oxygen , 2007, International Symposium on High Power Laser Systems and Applications.

[126]  David J. Benard,et al.  An electronic transition chemical laser , 1978 .

[127]  V. B. Aleskovskii,et al.  Singlet Oxygen: Methods of Preparation and Detection , 1981 .

[128]  Victor V. Bakshin,et al.  Luminescence of oxygen-nitrogen mix microwave discharge products in visible and near-IR spectral ranges: the moving microwave discharge as the singlet (a1Δg) oxygen source , 2003, International Symposium on High Power Laser Systems and Applications.

[129]  E. H. Fink,et al.  Collision-induced emission of O2 (a 1Δg → X 3Σg−) in the gas phase , 1992 .

[130]  A. Phelps,et al.  Excitation of the O2(a 1Δg) state by low energy electrons in O2–N2 mixtures , 1983 .

[131]  C. Ferreira,et al.  Kinetic model of a DC oxygen glow discharge , 1989 .

[132]  D. E. Burch,et al.  Strengths, Widths, and Shapes of the Oxygen Lines near 13,100 cm(-1) (7620 A). , 1969, Applied optics.

[133]  J. Bonnet,et al.  A POTENTIAL ATOMIC IODINE LASER PUMPED BY ELECTRICALLY GENERATED 1Δ OXYGEN , 1980 .

[134]  V. A. Feoktistov,et al.  Low pressure RF discharge in electronegative gases for plasma processing , 1993 .

[135]  J. E. McCord,et al.  Measurement of the radiative lifetime of O2(a1Δg) using cavity ring down spectroscopy , 2001 .

[136]  R. Wayne Singlet Molecular Oxygen , 2007 .

[137]  Hiroo Fujii,et al.  Long‐term stability in the operation of a chemical oxygen‐iodine laser for industrial use , 1989 .

[138]  Andrei A. Ionin,et al.  Problems of development of oxygen-iodine laser with electric discharge production of singlet delta oxygen , 2002, SPIE High-Power Laser Ablation.

[139]  Laurence S. Rothman,et al.  IMPROVED SPECTRAL PARAMETERS FOR THE THREE MOST ABUNDANT ISOTOPOMERS OF THE OXYGEN MOLECULE , 1998 .

[140]  J. Noxon OBSERVATION OF THE TRANSITION IN O2 , 1961 .

[141]  Josef Schmiedberger,et al.  RF plasma jet generator of singlet delta oxygen in chilled and energy-transfer modes for an oxygen-iodine laser , 2003, International Symposium on High Power Laser Systems and Applications.

[142]  C. Phipps High-Power Laser Ablation III , 1998 .

[143]  Yuri V. Savin,et al.  Investigations of processes in a glow electrical discharge singlet-oxygen generator for oxygen-iodine laser , 2005, International Symposium on High Power Laser Systems and Applications.

[144]  R. Hall,et al.  Scattering of 4.5 eV electrons by ground (X3 Σg-) state and metastable (a1Δ g) oxygen molecules , 1975 .

[145]  V. M. Kiselev,et al.  Lasing of iodine in the fullerene-oxygen-iodine system , 2003 .

[146]  H. Sabadil Die Schichterscheinungen in der positiven Säule der Sauerstoff-Niederdruck-Entladung , 1966 .

[147]  L. Pekárek,et al.  The connection between low-gradient form of the positive column in oxygen and moving striations , 1960 .

[148]  S. Lawton,et al.  Excitation of the b 1Σ+g state of O2 by low energy electrons , 1978 .

[149]  M. Kushner,et al.  Production of O2(Δ1) in flowing plasmas using spiker-sustainer excitation , 2006 .

[150]  R. Murray,et al.  Gas-phase kinetics of the reaction of singlet oxygen with olefins at atmospheric pressure , 1986 .

[151]  D. Carroll,et al.  Path to the measurement of positive gain on the 1315-nm transition of atomic iodine pumped by O/sub 2/(a/sup 1//spl Delta/) produced in an electric discharge , 2005, IEEE Journal of Quantum Electronics.

[152]  M. A. Biondi,et al.  Measurements of the Attachment of Low-Energy Electrons to Oxygen Molecules , 1962 .

[153]  F. Kaufman,et al.  FAST REACTIONS OF OH RADICALS , 1963 .

[154]  K. Mašek,et al.  Physical kinetics of a hf glow discharge in oxygen. Generation of thea1 Δg state for pumping an iodine laser , 1984 .

[155]  K. S. Klopovsky,et al.  Pressure scaling of an electro-discharge singlet oxygen generator (ED SOG) , 2006, International Symposium on High Power Laser Systems and Applications.

[156]  A. Vallance Jones,et al.  The seasonal variation and excitation mechanism of the 1·58 μ 1Δg−3Σg— Twilight airglow band , 1963 .

[157]  Josef Schmiedberger,et al.  Radio frequency (rf) hollow electrode discharge generator of singlet delta oxygen , 1995, International Symposium on High Power Laser Systems and Applications.

[158]  K. Tachibana,et al.  Excitation of the O2(a 1Δg) state by low energy electrons , 1981 .

[159]  Roger A. Haas,et al.  Plasma Stability of Electric Discharges in Molecular Gases , 1973 .

[160]  Dmitrii V. Sinitsyn,et al.  Theoretical studies on kinetics of singlet oxygen in nonthermal plasma , 2004, SPIE High-Power Laser Ablation.

[161]  C. S. Irving,et al.  A SOLTD‐PHASE PHOTOCHEMICAL SINGLET OXYGEN GENERATOR * , 1970 .

[162]  S. Mukkavilli,et al.  Modeling of the electrostatic corona discharge reactor , 1988 .

[163]  David L. Carroll,et al.  Preliminary yield measurements in the ElectriCOIL system , 2004, SPIE LASE.

[164]  K. S. Klopovsky,et al.  Experimental and theoretical investigation of oxygen glow discharge structure at low pressures , 1999 .

[165]  W. T. Rawlins,et al.  Gain measurements in a non-self-sustained electric discharge pumped oxygen-iodine laser cavity , 2006, International Symposium on High Power Laser Systems and Applications.

[166]  A. Rakhimov,et al.  Singlet Oxygen Generation in O2 Flow Excited by RF Discharge. II. Inhomogeneous Discharge Mode: ‘Plasma Jet' , 2005 .

[167]  R. R. Gamache,et al.  Einstein A coefficient, integrated band intensity, and population factors: application to the a^1@D , 2001 .

[168]  S. Yoshida,et al.  Development Of Chemical Oxygen Iodine Lasers For Industrial Uses , 1989, International Symposium on High Power Laser Systems and Applications.

[169]  K. Schofield The rate of destruction of O2 (1Δg) by atomic hydrogen , 1972 .

[170]  P. Burrow Dissociative attachment from the O2(a1Δg) state , 1973 .

[171]  C. E. Gardner,et al.  Temperature dependence of O2(1Δ)+O2(1Δ) and I(2P1/2)+O2(1Δ) energy pooling , 1981 .

[172]  William J. Kessler,et al.  Observations of gain on the I(P1∕22→P3∕22) transition by energy transfer from O2(aΔg1) generated by a microwave discharge in a subsonic-flow reactor , 2005 .

[173]  Б. Р. Шуб,et al.  Гетерогенная Релаксация Синглетного Кислорода , 1981 .

[174]  B. Minaev,et al.  Response calculations of electronic and vibrational transitions in molecular oxygen induced by interaction with noble gases. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.