Bandgap engineering of semiconductor heterostructures by molecular beam epitaxy: physics and applications

Abstract Bandgap engineering is a powerful technique for the design of new semiconductor materials and devices. Heterojunctions and molecular beam epitaxy allow band diagrams with nearly arbitrary and continuous bandgap variations to be made. In this way the transport and optical properties of these artificially structured semiconductors can be tailored at will. Interesting new phenomena have been discovered in these materials and a new generation of devices with unique capabilities is emerging from this approach. Finally, the tunability of band discontinuities via doping interface dipoles is discussed.

[1]  S. Datta,et al.  Quantum Electron Devices , 1990 .

[2]  I. Hayashi,et al.  JUNCTION LASERS WHICH OPERATE CONTINUOUSLY AT ROOM TEMPERATURE , 1970 .

[3]  Federico Capasso,et al.  Doping interface dipoles: Tunable heterojunction barrier heights and band‐edge discontinuities by molecular beam epitaxy , 1985 .

[4]  Federico Capasso Band‐gap engineering via graded gap, superlattice, and periodic doping structures: Applications to novel photodetectors and other devices , 1983 .

[5]  Baroni,et al.  Tuning band offsets at semiconductor interfaces by intralayer deposition. , 1991, Physical review. B, Condensed matter.

[6]  T. C. L. G. Sollner,et al.  Oscillations up to 420 GHz in GaAs/AlAs resonant tunneling diodes , 1989 .

[7]  Mártin,et al.  Modification of heterojunction band offsets by thin layers at interfaces: Role of the interface dipole. , 1990, Physical review. B, Condensed matter.

[8]  Osamu Mikami,et al.  Dependence of the GaAs/AlGaAs superlattice ionization rate on Al content , 1989 .

[9]  Y. Chen,et al.  Subpicosecond InP/InGaAs heterostructure bipolar transistors , 1989, IEEE Electron Device Letters.

[10]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[11]  Niloy K. Dutta,et al.  Long wavelength semiconductor lasers , 1988, Technical Digest., International Electron Devices Meeting.

[12]  F. Capasso,et al.  New floating-gate AlGaAs/GaAs memory devices with graded-gap electron injector and long retention times , 1988, IEEE Electron Device Letters.

[13]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[14]  F. Capasso,et al.  Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.

[15]  Gottfried H. Döhler,et al.  Electron States in Crystals with “nipi‐Superstructure” , 1972 .

[16]  G. Osbourn Strained-layer superlattices: A brief review , 1986 .

[17]  J. W. Matthews,et al.  Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks , 1975 .

[18]  F. Capasso,et al.  Impact ionization in the base of a hot‐electron AlSb/InAs bipolar transistor , 1990 .

[19]  Peter M. Asbeck,et al.  (GaAl)As/GaAs heterojunction bipolar transistors with graded composition in the base , 1983 .

[20]  Federico Capasso,et al.  Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications , 1986 .

[21]  Cho,et al.  Giant, triply resonant, third-order nonlinear susceptibility chi 3 omega (3) in coupled quantum wells. , 1992, Physical review letters.

[22]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[23]  Leroy L. Chang,et al.  New Transport Phenomenon in a Semiconductor "Superlattice" , 1974 .

[24]  C. Bethea,et al.  New graded band‐gap picosecond phototransistor , 1983 .

[25]  Kurz,et al.  Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice. , 1993, Physical review letters.

[26]  J. Faist,et al.  Observation of an electronic bound state above a potential well , 1992, Nature.

[27]  Federico Capasso,et al.  Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio , 1982 .

[28]  Walker,et al.  Tuning AlAs-GaAs band discontinuities and the role of Si-induced local interface dipoles. , 1991, Physical review. B, Condensed matter.

[29]  Malik,et al.  New photorefractive effect in graded-gap superlattices. , 1989, Physical review letters.

[30]  R. Kiehl,et al.  Resonant tunneling transistor with quantum well base and high‐energy injection: A new negative differential resistance device , 1985 .

[31]  Herbert Kroemer,et al.  A proposed class of hetero-junction injection lasers , 1963 .

[32]  C. Bethea,et al.  GaAs/AlGaAs quantum-well, long-wavelength infra-red (LWIR) detector with a detectivity comparable to HgCdTe , 1988 .

[33]  F. Stillinger Potentials supporting positive-energy eigenstates and their application to semiconductor heterostructures , 1976 .

[34]  Resonant multiphoton electron emission from a quantum well , 1992 .

[35]  Gottfried H. Döhler,et al.  Electrical and Optical Properties of Crystals with “nipi‐Superstructure” , 1972 .

[36]  W. Wiegmann,et al.  Laser oscillation from quantum states in very thin GaAs−Al0.2Ga0.8As multilayer structures , 1975 .

[37]  A. Cho Advances in molecular beam epitaxy (MBE) , 1991 .

[38]  T. Sollner,et al.  Resonant tunneling through quantum wells at frequencies up to 2.5 THz , 1983 .

[39]  P. R. Smith,et al.  Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity, and multiple valued logic , 1989 .

[40]  A. Y. Cho,et al.  Growth of III–V semiconductors by molecular beam epitaxy and their properties , 1983 .

[41]  H. Kroemer,et al.  Heterostructure bipolar transistors and integrated circuits , 1982, Proceedings of the IEEE.

[42]  C. Sirtori,et al.  Resonant Stark tuning of second‐order susceptibility in coupled quantum wells , 1992 .

[43]  R. Dingle,et al.  Direct Observation of Superlattice Formation in a Semiconductor Heterostructure , 1975 .

[44]  J. W. Matthews,et al.  Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers , 1976 .

[45]  Bernard S. Meyerson,et al.  Heterojunction bipolar transistors using Si-Ge alloys , 1989 .

[46]  Federico Capasso,et al.  Bipolar transistor with graded band-gap base , 1983 .

[47]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[48]  Quantum electron and optoelectronic devices (invited paper) , 1992 .

[49]  Osamu Mikami,et al.  Impact ionization rates in an InGaAs/InAlAs superlattice , 1989 .

[50]  J. Faist,et al.  Quantum wells with localized states at energies above the barrier height: A Fabry–Perot electron filter , 1992 .

[51]  Chu,et al.  Scattering-controlled transmission resonances and negative differential conductance by field-induced localization in superlattices. , 1990, Physical review letters.

[52]  G. Veith,et al.  Optical generation of continuous 76‐MHz surface acoustic waves on YZ LiNbO3 , 1982 .