Correlating growth conditions with photoluminescence and lasing properties of mid-IR antimonide type II “W” structures
暂无分享,去创建一个
William W. Bewley | James R. Lindle | Igor Vurgaftman | Chadwick L. Canedy | Chul Soo Kim | Mijin Kim | Lloyd J. Whitman | J. R. Meyer | I. Vurgaftman | L. Whitman | W. Bewley | J. Lindle | C. Kim | C. Canedy | Mijin Kim | G. I. Boishin | G. Boishin | J. Meyer
[1] William W. Bewley,et al. Antimonide type-II “W” lasers: growth studies and guided-mode leakage into substrate , 2004 .
[2] Christopher L. Felix,et al. Optimum growth parameters for type-II infrared lasers , 1999 .
[3] I. Vurgaftman,et al. Optical-pumping injection cavity (OPIC) mid-IR "W" lasers with high efficiency and low loss , 2000, IEEE Photonics Technology Letters.
[4] V P Konyaev,et al. Waveguiding properties of heterolasers based on InGaAs/GaAs strained quantum-well structures and characteristics of their gain spectra , 1994 .
[5] Brian R. Bennett,et al. Determination of temperature dependence of GaSb absorption edge and its application for transmission thermometry , 1999 .
[6] B. R. Bennett,et al. Barrier roughness effects in resonant interband tunnel diodes , 2001 .
[7] Brian R. Bennett,et al. Growth and characterisation of InAs/InGaSb/InAs/AlSb infrared laser structures , 1998 .
[8] Gregory H. Olsen,et al. Above-room-temperature optically pumped midinfrared W lasers , 1998 .
[9] Christopher L. Felix,et al. Role of internal loss in limiting type-II mid-IR laser performance , 1998 .
[10] Christopher L. Felix,et al. Continuous-wave operation of λ=3.25 μm broadened-waveguide W quantum-well diode lasers up to T=195 K , 2000 .
[11] Christopher L. Felix,et al. High-temperature continuous-wave 3–6.1 μm “W” lasers with diamond-pressure-bond heat sinking , 1999 .
[12] B. R. Bennett,et al. Interpreting interfacial structure in cross-sectional STM images of III–V semiconductor heterostructures , 2000 .
[13] Ron Kaspi,et al. 2 μm GaInAsSb/AlGaAsSb midinfrared laser grown digitally on GaSb by modulated-molecular beam epitaxy , 2000 .
[14] George W. Turner,et al. Linewidth analysis of the photoluminescence from InAs/GaSb/InAs/AlSb type-II superlattices , 2000 .
[15] I. Vurgaftman,et al. Dependence of type II “W” mid-infrared photoluminescence and lasing properties on growth conditions , 2003 .
[16] Ron Kaspi,et al. High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement , 2002 .
[17] Jerry R. Meyer,et al. Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices , 2002 .
[18] Jerry R. Meyer,et al. Room-temperature type-II W quantum well diode laser with broadened waveguide emitting at /spl lambda/=3.30 /spl mu/m , 1999 .
[19] John H. Marsh,et al. Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control , 1998 .
[20] Jerry R. Meyer,et al. Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .
[21] W. H. Weinberg,et al. Characterization of AlSb/InAs surfaces and resonant tunneling devices , 1999 .
[22] S. Erwin,et al. Electronic Versus Geometric Contrast in Cross-Sectional STM Images of III-V Semiconductor Heterostructures , 2003 .
[23] G. Turner,et al. Visualizing interfacial structure at non-common-atom heterojunctions with cross-sectional scanning tunneling microscopy. , 2000, Physical review letters.
[24] Christopher L. Felix,et al. Auger coefficients in type-II InAs/Ga1−xInxSb quantum wells , 1998 .