Correlating growth conditions with photoluminescence and lasing properties of mid-IR antimonide type II “W” structures

We explored the evolution of the photoluminescence (PL) properties versus molecular beam epitaxy growth conditions for a series of type II “W” quantum well [InAs/GaInSb/InAs/AlAsSb] structures. The highest PL intensities are obtained when the quantum wells are grown in a temperature range between 487 and 507 °C. Cross-sectional scanning tunneling microscopy was used to explain the temperature evolution of the PL. AlAs clustering within the AlAsSb barrier was observed at low growth temperature. The PL intensity decrease at high temperature was related to In clustering in the GaInSb layer. Laser structures grown at both 425 and 500 °C displayed lower lasing thresholds, lower internal losses, and longer Shockley–Read lifetimes than any similar structures grown previously at NRL. A thicker optical cladding layer of 3.5 μm suppressed mode leakage into the substrate and reduced the internal loss to 2.1 cm−1 at 78 K.

[1]  William W. Bewley,et al.  Antimonide type-II “W” lasers: growth studies and guided-mode leakage into substrate , 2004 .

[2]  Christopher L. Felix,et al.  Optimum growth parameters for type-II infrared lasers , 1999 .

[3]  I. Vurgaftman,et al.  Optical-pumping injection cavity (OPIC) mid-IR "W" lasers with high efficiency and low loss , 2000, IEEE Photonics Technology Letters.

[4]  V P Konyaev,et al.  Waveguiding properties of heterolasers based on InGaAs/GaAs strained quantum-well structures and characteristics of their gain spectra , 1994 .

[5]  Brian R. Bennett,et al.  Determination of temperature dependence of GaSb absorption edge and its application for transmission thermometry , 1999 .

[6]  B. R. Bennett,et al.  Barrier roughness effects in resonant interband tunnel diodes , 2001 .

[7]  Brian R. Bennett,et al.  Growth and characterisation of InAs/InGaSb/InAs/AlSb infrared laser structures , 1998 .

[8]  Gregory H. Olsen,et al.  Above-room-temperature optically pumped midinfrared W lasers , 1998 .

[9]  Christopher L. Felix,et al.  Role of internal loss in limiting type-II mid-IR laser performance , 1998 .

[10]  Christopher L. Felix,et al.  Continuous-wave operation of λ=3.25 μm broadened-waveguide W quantum-well diode lasers up to T=195 K , 2000 .

[11]  Christopher L. Felix,et al.  High-temperature continuous-wave 3–6.1 μm “W” lasers with diamond-pressure-bond heat sinking , 1999 .

[12]  B. R. Bennett,et al.  Interpreting interfacial structure in cross-sectional STM images of III–V semiconductor heterostructures , 2000 .

[13]  Ron Kaspi,et al.  2 μm GaInAsSb/AlGaAsSb midinfrared laser grown digitally on GaSb by modulated-molecular beam epitaxy , 2000 .

[14]  George W. Turner,et al.  Linewidth analysis of the photoluminescence from InAs/GaSb/InAs/AlSb type-II superlattices , 2000 .

[15]  I. Vurgaftman,et al.  Dependence of type II “W” mid-infrared photoluminescence and lasing properties on growth conditions , 2003 .

[16]  Ron Kaspi,et al.  High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement , 2002 .

[17]  Jerry R. Meyer,et al.  Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices , 2002 .

[18]  Jerry R. Meyer,et al.  Room-temperature type-II W quantum well diode laser with broadened waveguide emitting at /spl lambda/=3.30 /spl mu/m , 1999 .

[19]  John H. Marsh,et al.  Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control , 1998 .

[20]  Jerry R. Meyer,et al.  Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .

[21]  W. H. Weinberg,et al.  Characterization of AlSb/InAs surfaces and resonant tunneling devices , 1999 .

[22]  S. Erwin,et al.  Electronic Versus Geometric Contrast in Cross-Sectional STM Images of III-V Semiconductor Heterostructures , 2003 .

[23]  G. Turner,et al.  Visualizing interfacial structure at non-common-atom heterojunctions with cross-sectional scanning tunneling microscopy. , 2000, Physical review letters.

[24]  Christopher L. Felix,et al.  Auger coefficients in type-II InAs/Ga1−xInxSb quantum wells , 1998 .