Evaluating Visualization Sets: Trade-offs Between Local Effectiveness and Global Consistency

Evaluation criteria like expressiveness and effectiveness favor optimal use of space and visual encoding channels in a single visualization. However, individually optimized views may be inconsistent with one another when presented as a set in rec-ommender systems and narrative visualizations. For example, two visualizations might use very similar color palettes for different data fields, or they might render the same field but in different scales. These inconsistencies in visualization sets can cause interpretation errors and increase the cognitive load on viewers trying to analyze a set of visualizations. We propose two high-level principles for evaluating visualization set consistency: (1) the same fields should be presented in the same way, (2) different fields should be presented differently. These two principles are operationalized as a set of constraints for common visual encoding channels (x, y, color, size, and shape) to enable automated visualization set evaluation. To balance global (visualization set) consistency and local (single visualization) effectiveness, trade-offs in space and visual encodings have to be made. We devise an effectiveness preservation score to guide the selection of which conflicts to surface and potentially revise for sets of quantitative and ordinal encodings and a palette resource allocation mechanism for nominal encodings.

[1]  Jeffrey Heer,et al.  Animated Transitions in Statistical Data Graphics , 2007, IEEE Transactions on Visualization and Computer Graphics.

[2]  Cecilia R. Aragon,et al.  VizDeck: Streamlining exploratory visual analytics of scientific data , 2013 .

[3]  B. Marx The Visual Display of Quantitative Information , 1985 .

[4]  M. Sheelagh T. Carpendale,et al.  Heuristics for information visualization evaluation , 2006, BELIV '06.

[5]  Arvind Satyanarayan,et al.  Lyra: An Interactive Visualization Design Environment , 2014, Comput. Graph. Forum.

[6]  Michael S. Bernstein,et al.  Learning Perceptual Kernels for Visualization Design , 2014, IEEE Transactions on Visualization and Computer Graphics.

[7]  Kanit Wongsuphasawat,et al.  Towards a general-purpose query language for visualization recommendation , 2016, HILDA '16.

[8]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[9]  Lilly Koltun,et al.  TUFTE, Envisioning Information , 1991 .

[10]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[11]  S. S. Stevens On the psychophysical law. , 1957, Psychological review.

[12]  Kanit Wongsuphasawat,et al.  Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations , 2016, IEEE Transactions on Visualization and Computer Graphics.

[13]  Jean Scholtz,et al.  Toward visualization-specific heuristic evaluation , 2014, BELIV.

[14]  Bongshin Lee,et al.  A Deeper Understanding of Sequence in Narrative Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[15]  Jeffrey Heer,et al.  Narrative Visualization: Telling Stories with Data , 2010, IEEE Transactions on Visualization and Computer Graphics.

[16]  Cynthia A. Brewer,et al.  Color Use Guidelines for Mapping and Visualization , 1994 .

[17]  John T. Stasko,et al.  Value-driven evaluation of visualizations , 2014, BELIV.

[18]  Kent J. Moore Face-to-Face Time , 2002 .

[19]  Carlos Eduardo Scheidegger,et al.  An Algebraic Process for Visualization Design , 2014, IEEE Transactions on Visualization and Computer Graphics.

[20]  Vidya Setlur,et al.  Automatic generation of semantic icon encodings for visualizations , 2014, CHI.

[21]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[22]  Jarke J. van Wijk,et al.  Small Multiples, Large Singles: A New Approach for Visual Data Exploration , 2013, Comput. Graph. Forum.

[23]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[24]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[25]  S. Kosslyn Understanding charts and graphs , 1989 .

[26]  C. K. Ogden A Source Book Of Gestalt Psychology , 2013 .

[27]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .

[28]  J.C. Roberts,et al.  State of the Art: Coordinated & Multiple Views in Exploratory Visualization , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[29]  Arvind Satyanarayan,et al.  Declarative interaction design for data visualization , 2014, UIST.

[30]  Gustav Theodor Fechner,et al.  Elements of psychophysics , 1966 .

[31]  Priti Shah,et al.  A Model of the Perceptual and Conceptual Processes in Graph Comprehension , 1998 .