On the Completeness of Spider Diagrams Augmented with Constants

Diagrammatic reasoning can be described formally by a number of diagrammatic logics; spider diagrams are one of these, and are used for expressing logical statements about set membership and containment. Here, existing work on spider diagrams is extended to include constant spiders that represent specific individuals. We give a formal syntax and semantics for the extended diagram language before introducing a collection of reasoning rules encapsulating logical equivalence and logical consequence. We prove that the resulting logic is sound, complete and decidable.

[1]  Atsushi Shimojima,et al.  Inferential and Expressive Capacities of Graphical Representations: Survey and Some Generalizations , 2004, Diagrams.

[2]  Frank Ruskey,et al.  Drawing Area-Proportional Venn and Euler Diagrams , 2003, GD.

[3]  Gem Stapleton,et al.  Visualizing Ontologies: A Case Study , 2011, SEMWEB.

[4]  Gem Stapleton Spider Diagrams Augmented with Constants: A Complete System , 2008, DMS.

[5]  Corin A. Gurr Aligning syntax and semantics in formalisations of visual languages , 2001, Proceedings IEEE Symposia on Human-Centric Computing Languages and Environments (Cat. No.01TH8587).

[6]  Stuart Kent,et al.  Spider Diagrams: A Diagrammatic Reasoning System , 2001, J. Vis. Lang. Comput..

[7]  Judith Masthoff,et al.  Generating proofs with spider diagrams using heuristics , 2004 .

[8]  John Howse,et al.  Generating Euler Diagrams , 2002, Diagrams.

[9]  Stuart Kent,et al.  Constraint Diagrams: Visualizing Invariants in OO Modelling , 1997, OOPSLA 1997.

[10]  Gem Stapleton,et al.  The Expressiveness of Spider Diagrams Augmented with Constants , 2004, 2004 IEEE Symposium on Visual Languages - Human Centric Computing.

[11]  Judith Masthoff,et al.  Generating Readable Proofs: A Heuristic Approach to Theorem Proving With Spider Diagrams , 2004, Diagrams.

[12]  Gem Stapleton,et al.  The Expressiveness of Spider Diagrams , 2004, J. Log. Comput..

[13]  Gem Stapleton,et al.  Visualizing and specifying ontologies using diagrammatic logics , 2009 .

[14]  Gem Stapleton,et al.  Inductively Generating Euler Diagrams , 2011, IEEE Transactions on Visualization and Computer Graphics.

[15]  Thomas Reichherzer,et al.  Collaborative knowledge capture in ontologies , 2005, K-CAP '05.

[16]  Vittorio Scarano,et al.  VENNFS: a Venn-diagram file manager , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[17]  Andrew Fish,et al.  General Euler Diagram Generation , 2008, Diagrams.

[18]  Hongfang Liu,et al.  BMC Bioinformatics BioMed Central Methodology article VennMaster: Area-proportional Euler diagrams for functional GO , 2008 .

[19]  Peter Rodgers,et al.  Drawing Graphs in Euler Diagrams , 2004, Diagrams.

[20]  Leonhard Euler,et al.  Lettres à une princesse d'Allemagne sur divers sujets de physique & de philosophie , 1812 .

[21]  Judith Masthoff,et al.  Automated Theorem Proving in Euler Diagram Systems , 2007, Journal of Automated Reasoning.

[22]  Gem Stapleton,et al.  Evaluating and generalizing constraint diagrams , 2008, J. Vis. Lang. Comput..

[23]  Gerard Allwein,et al.  Using DAG transformations to verify Euler/Venn homogeneous and Euler/Venn FOL heterogeneous rules of inference , 2003, Software & Systems Modeling.

[24]  Gem Stapleton,et al.  Spider Diagrams , 2005, LMS J. Comput. Math..

[25]  John Taylor,et al.  Type-syntax and token-syntax in diagrammatic systems , 2001, FOIS.

[26]  Yuxiao Zhao,et al.  A reuse-based method of developing the ontology for e-procurement , 2003 .

[27]  Robin P. Clark Failure Mode Modular De-Composition Using Spider Diagrams , 2005, Electron. Notes Theor. Comput. Sci..