A Lattice Gas Automaton Capable of Modeling Three-Dimensional Electromagnetic Fields
暂无分享,去创建一个
[1] Norman Margolus. CAM-8: a computer architecture based on cellular automata , 1995 .
[2] I. Fukai,et al. Transient Analysis of a Stripline Having a Corner in Three-Dimensional Space , 1984 .
[3] R. Harrington. Time-Harmonic Electromagnetic Fields , 1961 .
[4] N. Adnani. Cellular automata models for the two dimensional scalar wave equation , 1996 .
[5] P. Johns,et al. Solution of Maxwell's equations in three space dimensions and time by the t.l.m. method of numerical analysis , 1975 .
[6] Norman Margolus,et al. Simulating three-dimensional hydrodynamics on a cellular automata machine , 1995 .
[7] Joe LoVetri,et al. Comparison of the transmission-line matrix and finite-difference time-domain methods for a problem containing a sharp metallic edge , 1999 .
[8] P. Johns. A Symmetrical Condensed Node for the TLM Method , 1987 .
[9] W. F. Hall,et al. A time-domain differential solver for electromagnetic scattering problems , 1989 .
[10] G. E. Bridges,et al. Extremely Low-Precision Integer Cellular Array Algorithm for Computational Electromagnetics G. E. Bridges, Member, IEEE, and N. R. S. Simons , 1999 .
[11] S.,et al. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media , 1966 .
[12] Giuseppe Pelosi,et al. Finite elements for wave electromagnetics : methods and techniques , 1994 .
[13] R. Löhner,et al. Electromagnetics via the Taylor-Galerkin Finite Element Method on Unstructured Grids , 1994 .
[14] G. Bridges,et al. Integer lattice gas automata for computational electromagnetics , 2000 .
[16] Greg E. Bridges,et al. On the potential use of cellular automata machines for electromagnetic field solution , 1995 .
[17] Y. Pomeau,et al. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions , 1976 .
[18] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .