3D discrete rotations using hinge angles

In this paper, we study 3D rotations on grid points computed by using only integers. For that purpose, we investigate the intersection between the 3D half-grid and the rotation plane. From this intersection, we define 3D hinge angles which determine a transit of a grid point from a voxel to its adjacent voxel during the rotation. Then, we give a method to sort all 3D hinge angles with integer computations. The study of 3D hinge angles allows us to design a 3D discrete rotation and to estimate the rotation between a pair of digital images in correspondence.

[1]  Jean-Pierre Reveillès,et al.  The geometry of the intersection of voxel spaces , 2001, IWCIA.

[2]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[3]  Jean-Pierre Reveillès,et al.  A Generic Approach for n-Dimensional Digital Lines , 2006, DGCI.

[4]  Eric Andres,et al.  The Quasi-Shear Rotation , 1996, DGCI.

[5]  Atsushi Imiya,et al.  On Combinatorial Properties Of Discrete Planar Surfaces , 2000 .

[6]  Eric Andres Cercles discrets et rotations discrètes , 1992 .

[7]  Gaëlle Largeteau-Skapin,et al.  Generalized Perpendicular Bisector and Circumcenter , 2010, CompIMAGE.

[8]  Yohan Thibault,et al.  Rotations in 2D and 3D discrete spaces , 2010 .

[9]  Yukiko Kenmochi,et al.  Computing upper and lower bounds of rotation angles from digital images , 2009, Pattern Recognit..

[10]  Eric Schmutz,et al.  Rational points on the unit sphere , 2008 .

[11]  Yukiko Kenmochi,et al.  Hinge Angles for 3D Discrete Rotations , 2009, IWCIA.

[12]  Laurent Fuchs,et al.  An Algorithm to Decompose n-Dimensional Rotations into Planar Rotations , 2010, CompIMAGE.

[13]  Gad M. Landau,et al.  Two-dimensional pattern matching with rotations , 2004, Theor. Comput. Sci..

[14]  Richard I. Hartley,et al.  Global Optimization through Rotation Space Search , 2009, International Journal of Computer Vision.

[15]  Heinrich Niemann,et al.  Using Quaternions for Parametrizing 3-D Rotations in Unconstrained Nonlinear Optimization , 2001, VMV.

[16]  K. Voss Discrete Images, Objects, and Functions in Zn , 1993 .

[17]  Tommaso Toffoli,et al.  Three-Dimensional Rotations by Three Shears , 1997, CVGIP Graph. Model. Image Process..

[18]  Rocio Gonzalez-Diaz,et al.  Discrete Geometry for Computer Imagery , 2013, Lecture Notes in Computer Science.

[19]  Arie E. Kaufman,et al.  3D Volume Rotation Using Shear Transformations , 2000, Graph. Model..

[20]  Eric Andres,et al.  New methods in oblique slice generation , 1996, Medical Imaging.

[21]  Bertrand Nouvel,et al.  Rotations discrètes et automates cellulaires , 2006 .

[22]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[23]  SugimotoAkihiro,et al.  Computing upper and lower bounds of rotation angles from digital images , 2009 .

[24]  W. S. Anglin Using Pythagorean triangles to approximate angles , 1988 .