Robot SLAM with Ad hoc wireless network adapted to search and rescue environments

An innovative multi-robot simultaneous localization and mapping (SLAM) is proposed based on a mobile Ad hoc local wireless sensor network (Ad-WSN). Multiple followed-robots equipped with the wireless link RS232/485 module act as mobile nodes, with various on-board sensors, Tp-link wireless local area network cards, and Tp-link wireless routers. The master robot with embedded industrial PC and a complete robot control system autonomously performs the SLAM task by exchanging information with multiple followed-robots by using this self-organizing mobile wireless network. The PC on the remote console can monitor multi-robot SLAM on-site and provide direct motion control of the robots. This mobile Ad-WSN complements an environment devoid of usual GPS signals for the robots performing SLAM task in search and rescue environments. In post-disaster areas, the network is usually absent or variable and the site scene is cluttered with obstacles. To adapt to such harsh situations, the proposed self-organizing mobile Ad-WSN enables robots to complete the SLAM process while improving the performances of object of interest identification and exploration area coverage. The information of localization and mapping can communicate freely among multiple robots and remote PC control center via this mobile Ad-WSN. Therefore, the autonomous master robot runs SLAM algorithms while exchanging information with multiple followed-robots and with the remote PC control center via this local WSN environment. Simulations and experiments validate the improved performances of the exploration area coverage, object marked, and loop closure, which are adapted to search and rescue post-disaster cluttered environments.摘要本文提出了一种基于移动Ad hoc 局域无线传感器网络 (Ad-WSN) 的创新型多机器人同时定位 与地图创建 (SLAM)。通过装备无线连接模块RS232/485 的多机器人作为移动的节点,将机器人车载 各种传感器、Tp-link 无线局域网卡和Tp-link 无线路由器等部署覆盖到整个探索环境区域;具有内置 工业PC (IPC) 的主机器人和完全自主控制系统,通过使用该移动Ad-WSN 无线传感器局域网,与多 机器人交换信息以自主执行SLAM 任务;位于安全环境的远程控制中心可以监控现场多机器人SLAM 执行情况,并能够对机器人提供直接运动控制,以保障恶劣环境下机器人的运行安全。移动Ad-WSN 无线传感器局域网弥补了在搜索和救援 (SAR) 环境中,机器人执行SLAM 任务时通常GPS 定位信号 的易变或缺失。灾后SAR 环境中,信息交换网络通常不存在或不可靠,搜救现场充满障碍物。为了 适应恶劣SAR 环境的苛刻条件,本文提出的多机器人自组织移动Ad-WSN 局域网能够完全自主执行 SLAM 过程,同时提高了搜救兴趣目标 (OOI) 辨识、SLAM 信号的探索区域面积覆盖性能。定位和 地图构建信息可以通过该移动Ad-WSN 无线局域网在多机器人之间,以及与远程PC 控制中心之间进 行传输和通讯。因此,自主机器人能够在与多随从机器人交换信息的同时运行SLAM 算法,并通过该 无线局域网与远程PC 控制中心交换信息。仿真和实验验证了自主机器人移动Ad-WSN 无线局域网 SLAM 适应探索区域面积覆盖、搜救目标定位标记、运动轨迹闭环重访点检测等适应灾后SAR 环境 的改进性能。

[1]  S. Y. Chen,et al.  Kalman Filter for Robot Vision: A Survey , 2012, IEEE Transactions on Industrial Electronics.

[2]  Michael Suppa,et al.  Stereo-vision based obstacle mapping for indoor/outdoor SLAM , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Luis Miguel Bergasa,et al.  Real-Time Hierarchical Outdoor SLAM Based on Stereovision and GPS Fusion , 2009, IEEE Transactions on Intelligent Transportation Systems.

[4]  Andreas Birk,et al.  A networking framework for teleoperation in safety, security, and rescue robotics , 2009, IEEE Wireless Communications.

[5]  Micael S. Couceiro,et al.  Ad hoc communication in teams of mobile robots using zigbee technology , 2015, Comput. Appl. Eng. Educ..

[6]  Hyun Myung,et al.  Landmark-Based Particle Localization Algorithm for Mobile Robots With a Fish-Eye Vision System , 2013, IEEE/ASME Transactions on Mechatronics.

[7]  Stefano Panzieri,et al.  A joint routing and localization algorithm for emergency scenario , 2014, Ad Hoc Networks.

[8]  Hwan Hur,et al.  Unknown Input H$_{\bm \infty}$ Observer-Based Localization of a Mobile Robot With Sensor Failure , 2014, IEEE/ASME Transactions on Mechatronics.

[9]  Alexander Kleiner,et al.  Real‐time localization and elevation mapping within urban search and rescue scenarios , 2007, J. Field Robotics.

[10]  Sanem Kabadayi,et al.  Mobile robot comes to the rescue in a WSN , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[11]  Thomas Bräunl,et al.  Cooperative multi-robot navigation, exploration, mapping and object detection with ROS , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[12]  Ren C. Luo,et al.  Inference algorithm based wireless and pyroelectric sensory fusion system for indoor human/robot localization and monitoring , 2011, 2011 IEEE International Conference on Robotics and Automation.

[13]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[14]  Konstantin Kondak,et al.  On the Cooperation between Mobile Robots and Wireless Sensor Networks , 2014 .

[15]  Miquel Angel Piera Eroles,et al.  Deadlock-Free Scheduling Method for Flexible Manufacturing Systems Based on Timed Colored Petri Nets and Anytime Heuristic Search , 2015, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[16]  Yong Wang,et al.  Active global localization based on localizability for mobile robots , 2014, Robotica.

[17]  Ronald Parr,et al.  Hierarchical Linear/Constant Time SLAM Using Particle Filters for Dense Maps , 2005, NIPS.

[18]  Gurkan Tuna,et al.  Wireless sensor network-based communication for cooperative simultaneous localization and mapping , 2015, Comput. Electr. Eng..

[19]  Rafael Fierro,et al.  A Cooperative Heterogeneous Mobile Wireless Mechatronic System , 2014, IEEE/ASME Transactions on Mechatronics.

[20]  Thomas Emter,et al.  Situation Responsive Networking of Mobile Robots for Disaster Management , 2014, ISR 2014.

[21]  Bin Li,et al.  Subjective exploration for simultaneous localization and mapping used in ruins , 2015, 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER).

[22]  Jie Li,et al.  Relay movement control for maintaining connectivity in aeronautical ad hoc networks , 2016 .

[23]  F. Aghili,et al.  Driftless 3-D Attitude Determination and Positioning of Mobile Robots By Integration of IMU With Two RTK GPSs , 2013, IEEE/ASME Transactions on Mechatronics.

[24]  Lino Marques,et al.  Computation Sharing in Distributed Robotic Systems: A Case Study on SLAM , 2015, IEEE Transactions on Automation Science and Engineering.

[25]  Turgay Korkmaz,et al.  The integration of mobile (tele) robotics and wireless sensor networks: A survey , 2014, Comput. Commun..

[26]  Ryan M. Eustice,et al.  Perception-driven navigation: Active visual SLAM for robotic area coverage , 2013, 2013 IEEE International Conference on Robotics and Automation.

[27]  Hao Fu,et al.  A novel algorithm for SLAM in dynamic environments using landscape theory of aggregation , 2016 .

[28]  Gurkan Tuna,et al.  An autonomous wireless sensor network deployment system using mobile robots for human existence detection in case of disasters , 2014, Ad Hoc Networks.

[29]  Jinsong Yu,et al.  Comparison of dynamic Bayesian network approaches for online diagnosis of aircraft system , 2016 .

[30]  Jiming Chen,et al.  Cooperative and Active Sensing in Mobile Sensor Networks for Scalar Field Mapping , 2015, IEEE Trans. Syst. Man Cybern. Syst..

[31]  Alexander Ferworn,et al.  Establishing network connectivity under rubble using a hybrid wired and wireless approach , 2012, 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[32]  Paolo Dario,et al.  Design of a Robotic Module for Autonomous Exploration and Multimode Locomotion , 2013, IEEE/ASME Transactions on Mechatronics.

[33]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[34]  Sebastian Magierowski,et al.  Evaluating Wireless Network Effects for SLAM Robot Map Making , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.