The valley version of the Extended Delta Conjecture
暂无分享,去创建一个
[1] James Haglund,et al. The Delta Conjecture , 2015, Discrete Mathematics & Theoretical Computer Science.
[2] Andrew Timothy Wilson,et al. An Extension of MacMahon's Equidistribution Theorem to Ordered Multiset Partitions , 2014, Electron. J. Comb..
[3] Jeffrey B. Remmel,et al. A computational and combinatorial exposé of plethystic calculus , 2011 .
[4] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[5] Brendon Rhoades,et al. Ordered set partition statistics and the Delta Conjecture , 2016, J. Comb. Theory, Ser. A.
[6] Marino Romero. The Delta Conjecture at $q=1$ , 2016, 1609.04865.
[7] J. F. van Diejen,et al. Algebraic Methods and 𝑞-Special Functions , 1999 .
[8] Alain Lascoux,et al. Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .
[9] J. Haglund,et al. Hall-Littlewood expansions of Schur delta operators at $t = 0$ , 2018, 1801.08017.
[10] J. Remmel,et al. A Proof of the Delta Conjecture When q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{q=0}$$\end{document} , 2019, Annals of Combinatorics.
[11] Anne Schilling,et al. A minimaj-preserving crystal on ordered multiset partitions , 2018, Adv. Appl. Math..
[12] Mark Haiman,et al. Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .
[14] Michele D'Adderio,et al. The generalized Delta conjecture at t=0 , 2020, Eur. J. Comb..
[15] Arun Ram,et al. A combinatorial formula for Macdonald polynomials , 2008, 0803.1146.
[16] J. B. Remmel,et al. A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.
[17] Erik Carlsson,et al. A proof of the shuffle conjecture , 2015, 1508.06239.