The valley version of the Extended Delta Conjecture

The Shuffle Theorem of Carlsson and Mellit gives a combinatorial expression for the bigraded Frobenius characteristic of the ring of diagonal harmonics, and the Delta Conjecture of Haglund, Remmel and the second author provides two generalizations of the Shuffle Theorem to the delta operator expression $\Delta'_{e_k} e_n$. Haglund et al. also propose the Extended Delta Conjecture for the delta operator expression $\Delta'_{e_k} \Delta_{h_r}e_n$, which is analogous to the rise version of the Delta Conjecture. Recently, D'Adderio, Iraci and Wyngaerd proved the rise version of the Extended Delta Conjecture at the case when $t=0$. In this paper, we propose a new valley version of the Extended Delta Conjecture. Then, we work on the combinatorics of extended ordered multiset partitions to prove that the two conjectures for $\Delta'_{e_k} \Delta_{h_r}e_n$ are equivalent when $t$ or $q$ equals 0, thus proving the valley version of the Extended Delta Conjecture when $t$ or $q$ equals 0.

[1]  James Haglund,et al.  The Delta Conjecture , 2015, Discrete Mathematics & Theoretical Computer Science.

[2]  Andrew Timothy Wilson,et al.  An Extension of MacMahon's Equidistribution Theorem to Ordered Multiset Partitions , 2014, Electron. J. Comb..

[3]  Jeffrey B. Remmel,et al.  A computational and combinatorial exposé of plethystic calculus , 2011 .

[4]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[5]  Brendon Rhoades,et al.  Ordered set partition statistics and the Delta Conjecture , 2016, J. Comb. Theory, Ser. A.

[6]  Marino Romero The Delta Conjecture at $q=1$ , 2016, 1609.04865.

[7]  J. F. van Diejen,et al.  Algebraic Methods and 𝑞-Special Functions , 1999 .

[8]  Alain Lascoux,et al.  Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .

[9]  J. Haglund,et al.  Hall-Littlewood expansions of Schur delta operators at $t = 0$ , 2018, 1801.08017.

[10]  J. Remmel,et al.  A Proof of the Delta Conjecture When q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{q=0}$$\end{document} , 2019, Annals of Combinatorics.

[11]  Anne Schilling,et al.  A minimaj-preserving crystal on ordered multiset partitions , 2018, Adv. Appl. Math..

[12]  Mark Haiman,et al.  Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .

[14]  Michele D'Adderio,et al.  The generalized Delta conjecture at t=0 , 2020, Eur. J. Comb..

[15]  Arun Ram,et al.  A combinatorial formula for Macdonald polynomials , 2008, 0803.1146.

[16]  J. B. Remmel,et al.  A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.

[17]  Erik Carlsson,et al.  A proof of the shuffle conjecture , 2015, 1508.06239.