Simple Bounds for the Convergence of Empirical and Occupation Measures in 1-Wasserstein Distance

We study the problem of non-asymptotic deviations between a reference measure and its empirical version, in the 1-Wasserstein metric, under the standing assumption that the reference measure satisfies a transport-entropy inequality. We extend some results of F. Bolley, A. Guillin and C. Villani with simple proofs. Our methods are based on concentration inequalities and extend to the general setting of measures on a Polish space. Deviation bounds for the occupation measure of a contracting Markov chain in 1-Wasserstein distance are also given. Throughout the text, several examples are worked out, including the cases of Gaussian measures on separable Banach spaces, and laws of diffusion processes.

[1]  R. Dudley The Speed of Mean Glivenko-Cantelli Convergence , 1969 .

[2]  János Komlós,et al.  On optimal matchings , 1984, Comb..

[3]  P. Massart The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality , 1990 .

[4]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[5]  M. Rao,et al.  Theory of Orlicz spaces , 1991 .

[6]  Michel Talagrand,et al.  Matching Random Samples in Many Dimensions , 1992 .

[7]  G. Kerkyacharian,et al.  Large deviations and the Strassen theorem in Hölder norm , 1992 .

[8]  J. Kuelbs,et al.  Metric entropy and the small ball problem for Gaussian measures , 1993 .

[9]  N. H. Bingham,et al.  LARGE DEVIATIONS TECHNIQUES AND APPLICATIONS , 1994 .

[10]  J. Yukich,et al.  Asymptotics for transportation cost in high dimensions , 1995 .

[11]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[12]  K. Marton Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .

[13]  M. Ledoux,et al.  Isoperimetry and Gaussian analysis , 1996 .

[14]  S. Bobkov,et al.  Poincaré’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution , 1997 .

[15]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[16]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[17]  E. Giné,et al.  Central limit theorems for the wasserstein distance between the empirical and the true distributions , 1999 .

[18]  Werner Linde,et al.  Approximation, metric entropy and small ball estimates for Gaussian measures , 1999 .

[19]  M. Ledoux The concentration of measure phenomenon , 2001 .

[20]  Franz Fehringer Kodierung von Gaußmaßen , 2001 .

[21]  Harald Luschgy,et al.  Functional Quantization and Small Ball Probabilities for Gaussian Processes , 2003, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[22]  Michael Scheutzow,et al.  On the Link Between Small Ball Probabilities and the Quantization Problem for Gaussian Measures on Banach Spaces , 2003 .

[23]  C. Villani,et al.  Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.

[24]  N. Gozlan,et al.  A large deviation approach to some transportation cost inequalities , 2005, math/0510601.

[25]  C. Villani,et al.  Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities , 2005 .

[26]  Quantitative concentration inequalities on sample path space for mean field interaction , 2005, math/0511752.

[27]  Y. Ollivier Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.

[28]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[29]  C. Villani The founding fathers of optimal transport , 2009 .

[30]  Christian L'eonard,et al.  Transport Inequalities. A Survey , 2010, 1003.3852.

[31]  Liming Wu,et al.  Sanov’s theorem in the Wasserstein distance: A necessary and sufficient condition , 2010 .

[32]  Y. Ollivier,et al.  CURVATURE, CONCENTRATION AND ERROR ESTIMATES FOR MARKOV CHAIN MONTE CARLO , 2009, 0904.1312.

[33]  Thibaut Le Gouic,et al.  On the mean speed of convergence of empirical and occupation measures in Wasserstein distance , 2011, 1105.5263.

[34]  C. Bordenave,et al.  Combinatorial Optimization Over Two Random Point Sets , 2011, 1103.2734.