Layered Platinum Dichalcogenides (PtS2, PtSe2, and PtTe2) Electrocatalysis: Monotonic Dependence on the Chalcogen Size

Presently, research in layered transition metal dichalcogenides (TMDs) for numerous electrochemical applications have largely focused on Group 6 TMDs, especially MoS2 and WS2, whereas TMDs belonging to other groups are relatively unexplored. This work unravels the electrochemistry of Group 10 TMDs: specifically PtS2, PtSe2, and PtTe2. Here, the inherent electroactivities of these Pt dichalcogenides and the effectiveness of electrochemical activation on their charge transfer and electrocatalytic properties are thoroughly examined. By performing density functional theory (DFT) calculations, the electrochemical and electrocatalytic behaviors of the Pt dichalcogenides are elucidated. The charge transfer and electrocatalytic attributes of the Pt dichalcogenides are strongly associated with their electronic structures. In terms of charge transfer, electrochemical activation has been successful for all Pt dichalcogenides as evident in the faster heterogeneous electron transfer (HET) rates observed in electrochemically reduced Pt dichalcogenides. Interestingly, the hydrogen evolution reaction (HER) performance of the Pt dichalcogenides adheres to a trend of PtTe2 > PtSe2 > PtS2 whereby the HER catalytic property increases down the chalcogen group. Importantly, the DFT study shows this correlation to their electronic property in which PtS2 is semiconducting, PtSe2is semimetallic, and PtTe2 is metallic. Furthermore, Pt dichalcogenides are effectively activated for HER. Distinct electronic structures of Pt dichalcogenides account for their different responses to electrochemical activation. Among all activated Pt dichalcogenides, PtS2 shows most accentuated improvement as a HER electrocatalyst with an exceptional 50% decline in HER overpotential. Knowledge on Pt dichalcogenides provides valuable insights in the field of TMD electrochemistry, in particular, for the currently underrepresented Group 10 TMDs.

[1]  O. Gorochov,et al.  Crystal growth and characterization of several platinum sulfoselenides , 1976 .

[2]  J. Lingane,et al.  Polarography of selenium and tellurium; the -2 states. , 1948, Journal of the American Chemical Society.

[3]  Yeliang Wang,et al.  Monolayer PtSe₂, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. , 2015, Nano letters.

[4]  M. Pumera,et al.  Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. , 2015, ACS Nano.

[5]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[6]  S. Jobic,et al.  Occurrence and characterization of anionic bondings in transition metal dichalcogenides , 1992 .

[7]  L. David,et al.  Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes. , 2012, The journal of physical chemistry letters.

[8]  Zhiyuan Zeng,et al.  Electrochemically reduced single-layer MoS₂ nanosheets: characterization, properties, and sensing applications. , 2012, Small.

[9]  E. C. Potter,et al.  The Mechanism of the Cathodic Hydrogen Evolution Reaction , 1952 .

[10]  M. Pumera,et al.  Enhancement of electrochemical and catalytic properties of MoS2 through ball-milling , 2015 .

[11]  M. Whangbo,et al.  Trends in the structure and bonding in the layered platinum dioxide and dichalcogenides PtQ2 (Q=O, S, Se, Te) , 2003 .

[12]  M. Schlüter,et al.  Density-Functional Theory of the Energy Gap , 1983 .

[13]  J. G. Thomas Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals , 1961 .

[14]  S. Jobic,et al.  Anionic polymeric bonds in transition metal ditellurides , 1992 .

[15]  H. Vrubel,et al.  Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution , 2012 .

[16]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[17]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[18]  Katsuhiko Ariga,et al.  Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future , 2015 .

[19]  F. Hulliger Electrical properties of some nickel-group chalcogenides , 1965 .

[20]  W. Jaegermann,et al.  Reactivity of layer type transition metal chalcogenides towards oxidation , 1986 .

[21]  M. Pumera,et al.  Precise tuning of the charge transfer kinetics and catalytic properties of MoS2 materials via electrochemical methods. , 2014, Chemistry.

[22]  M. Pumera,et al.  Electrochemistry of graphene and related materials. , 2014, Chemical reviews.

[23]  Allen J. Bard,et al.  Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. , 2012, Nano letters.

[24]  Yuyan Shao,et al.  Graphene Based Electrochemical Sensors and Biosensors: A Review , 2010 .

[25]  P. Hu,et al.  Utilization of the three-dimensional volcano surface to understand the chemistry of multiphase systems in heterogeneous catalysis. , 2008, Journal of the American Chemical Society.

[26]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[27]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[28]  Richard G. Hennig,et al.  Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts , 2013 .

[29]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[30]  M. Pumera,et al.  Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. , 2015, Chemical reviews.

[31]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[32]  P. Ajayan,et al.  Facile Synthesis of Single Crystal Vanadium Disulfide Nanosheets by Chemical Vapor Deposition for Efficient Hydrogen Evolution Reaction , 2015, Advanced materials.

[33]  H. Tributsch Photoelectrochemical behaviour of layer-type transition metal dichalcogenides , 1980 .

[34]  B. McDuffie,et al.  Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry , 1970 .

[35]  B. V. Tilak,et al.  Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H , 2002 .

[36]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[37]  Richard S. Nicholson,et al.  Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. , 1965 .

[38]  S. Bose,et al.  Recent advances in graphene-based biosensors. , 2011, Biosensors & bioelectronics.

[39]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[40]  Ruitao Lv,et al.  Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. , 2015, Accounts of chemical research.

[41]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[42]  A. Krasheninnikov,et al.  van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. , 2012, Physical review letters.

[43]  J. Enderlein,et al.  XPS Analysis of Bridgman‐grown CuInTe2 and of its Native Oxide , 1996 .

[44]  S. Kobeleva,et al.  XPS study of fresh and oxidized GeTe and (Ge,Sn)Te surface , 2001 .

[45]  G. Guo,et al.  The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2 , 1986 .

[46]  N. Thakkar,et al.  Determination of selenium(IV) and tellurium(IV) by differential pulse polarography. , 1989, Talanta.

[47]  G. Kliche Far-infrared and X-ray investigations of the mixed platinum dichalcogenides PtS2−xSex, PtSe2−xTex, and PtS2−xTex , 1985 .

[48]  Martin Pumera,et al.  Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing , 2014 .

[49]  Katsuhiko Ariga,et al.  Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution , 2014 .

[50]  R. McCreery,et al.  Advanced carbon electrode materials for molecular electrochemistry. , 2008, Chemical reviews.

[51]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[52]  Y. Teterin,et al.  X-ray photoelectron study of Te-W-O and Te-W-La-O glasses , 2007 .

[53]  Dmitri Golberg,et al.  Halide-Assisted Atmospheric Pressure Growth of Large WSe2 and WS2 Monolayer Crystals , 2015 .

[54]  Gunuk Wang,et al.  Enhanced Electrocatalysis for Hydrogen Evolution Reactions from WS2 Nanoribbons , 2014 .

[55]  Z. Yin,et al.  Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. , 2014, Accounts of chemical research.

[56]  S. W. Cho,et al.  Electrochemical Oxidation of Size-Selected Pt Nanoparticles Studied Using in Situ High-Energy-Resolution X‑ray Absorption Spectroscopy , 2012 .

[57]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[58]  W. Kautek,et al.  Anisotropic photocorrosion of n-type MoS2, MoSe2, and WSe2 single crystal surfaces: The role of cleavage steps, line and screw dislocations , 1982 .

[59]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[60]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[61]  W. Goddard,et al.  Accurate Band Gaps for Semiconductors from Density Functional Theory , 2011 .

[62]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[63]  C. Malitesta,et al.  Amperometric non-enzymatic bimetallic glucose sensor based on platinum tellurium microtubes modified electrode , 2012 .

[64]  P. Sherwood,et al.  X‐ray photoelectron spectroscopic studies of sulfates and bisulfates interpreted by Xα and band structure calculations , 2000 .

[65]  Thomas F. Jaramillo,et al.  Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials , 2014 .