Integrating 5 × 5 Dammann gratings to detect orbital angular momentum states of beams with the range of -24 to +24.

The 5×5 2D binary Dammann vortex grating can distribute energy among different diffraction orders equally and can realize measurement of orbital angular momentum (OAM) states from -12 to +12. Here we combine a 5×5 Dammann vortex grating and a spiral phase plate with the order +12 or -12, which makes the topological charge of beams in the array increase or decrease by 12; thus, the range of measuring OAM states can be extended to a range from -24 to +24. We upload the holograms of such gratings on a liquid crystal spatial light modulator to do the experiment. The experimental results fit well with the simulation results. This method is also effective for multiplexed OAM beams and can be used in optical communications in the future.

[1]  A. Nicolas,et al.  A quantum memory for orbital angular momentum photonic qubits , 2013, Nature Photonics.

[2]  C. Zhou,et al.  Numerical study of Dammann array illuminators. , 1995, Applied optics.

[3]  Johannes Courtial,et al.  Measurement of the light orbital angular momentum spectrum using an optical geometric transformation , 2011 .

[4]  M. Beijersbergen,et al.  Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. , 2008, Physical review letters.

[5]  Takahiro Kuga,et al.  Novel Optical Trap of Atoms with a Doughnut Beam , 1997 .

[6]  Johannes Courtial,et al.  Refractive elements for the measurement of the orbital angular momentum of a single photon. , 2012, Optics express.

[7]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[8]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[9]  Shiyao Fu,et al.  Generating polarization vortices by using helical beams and a Twyman Green interferometer. , 2015, Optics letters.

[10]  A. J. Jesus-Silva,et al.  Unveiling square and triangular optical lattices: a comparative study. , 2014, Optics letters.

[11]  Robert W. Boyd,et al.  Measurement of the orbital-angular-momentum spectrum of fields with partial angular coherence using double-angular-slit interference , 2012, 1208.3178.

[12]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[13]  A. Willner,et al.  100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. , 2014, Optics letters.

[14]  W. C. Soares,et al.  Unveiling a truncated optical lattice associated with a triangular aperture using light's orbital angular momentum. , 2010, Physical review letters.

[15]  O. Maragò,et al.  Sagnac interferometer method for synthesis of fractional polarization vortices. , 2009, Optics letters.

[16]  R. Burge,et al.  Extending the detection range of optical vortices by Dammann vortex gratings. , 2010, Optics letters.

[17]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[18]  W. Jhe,et al.  Efficient optical guiding of trapped cold atoms by a hollow laser beam , 2001 .

[19]  Chunqing Gao,et al.  Measuring OAM states of light beams with gradually-changing-period gratings. , 2015, Optics letters.

[20]  Robert W Boyd,et al.  Efficient separation of the orbital angular momentum eigenstates of light , 2013, Nature Communications.

[21]  Moshe Tur,et al.  Reconfigurable orbital angular momentum and polarization manipulation of 100 Gbit/s QPSK data channels. , 2013, Optics letters.

[22]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.