Equivalence of permutation polytopes corresponding to strictly supermodular functions
暂无分享,去创建一个
[1] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.
[2] Louis J. Billera,et al. The Combinatorics of Permutation Polytopes , 1994, Formal Power Series and Algebraic Combinatorics.
[3] Jack Edmonds,et al. Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.
[4] Martin Grötschel,et al. Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982 , 1983, ISMP.
[5] R. E. Bixby,et al. The Partial Order of a Polymatroid Extreme Point , 1985, Math. Oper. Res..
[6] Uriel G. Rothblum,et al. Permutation polytopes corresponding to strongly supermodular functions , 2004, Discret. Appl. Math..
[7] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[8] Uriel G. Rothblum,et al. Partition polytopes over 1-dimensional points , 1999, Math. Program..
[9] Maurice Queyranne,et al. Polyhedral Approaches to Machine Scheduling , 2008 .
[10] Satoru Fujishige,et al. Submodular functions and optimization , 1991 .
[11] L. Shapley. Cores of convex games , 1971 .
[12] Maurice Queyranne,et al. Structure of a simple scheduling polyhedron , 1993, Math. Program..
[13] P. Schoute. Analytical treatment of the polytopes regularly derived from the regular polytopes , 1911 .
[14] G. Choquet. Theory of capacities , 1954 .
[15] G. Ziegler. Lectures on Polytopes , 1994 .