Mathematical model for the prediction of strength degradation of composites subjected to constant amplitude fatigue

Abstract Residual strength models are widely used for the fatigue analysis of composites subjected to both constant and variable amplitude fatigue. However, they often require large experimental efforts to determine the model parameters. The aim of this research is to develop a simplified mathematical model which uses a single set of parameter values to predict the strength degradation of the elements subjected to different load levels, and thus, to reduce the required experimental effort for the determination of model parameters for each load level separately. The new two-parameter model is developed here on the basis of normalization of the difference between the residual strength and maximal applied load in the constant amplitude cyclic loading, herein referred to as the strength reserve, with respect to initial conditions. The model is validated using different experimental data sets from the literature. High correlation with the experimental data is observed. Moreover, the curves obtained by using the single set values of parameters matched the curves of some of the most accurate residual strength models from the literature.

[1]  H. Whitworth,et al.  Cumulative Damage in Composites , 1990 .

[2]  John J. Lesko,et al.  Residual strength prediction of composite materials: Random spectrum loading , 2008 .

[3]  J. Korsgaard,et al.  Residual strength of GFRP at high-cycle fatigue , 1999 .

[4]  R. Brook,et al.  Cumulative Damage in Fatigue: A Step towards Its Understanding , 1969 .

[5]  Roham Rafiee,et al.  Theoretical modeling of fatigue phenomenon in composite pipes , 2017 .

[6]  Larry Lessard,et al.  Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—II. Experimental evaluation , 1997 .

[7]  J. N. Yang,et al.  Fatigue and Residual Strength Degradation for Graphite/Epoxy Composites Under Tension-Compression Cyclic Loadings , 1978 .

[8]  John J. Lesko,et al.  Modeling the variable amplitude fatigue of composite materials: A review and evaluation of the state of the art for spectrum loading , 2008 .

[9]  Ian A. Ashcroft,et al.  Fracture mechanics and damage mechanics based fatigue lifetime prediction of adhesively bonded joints subjected to variable amplitude fatigue , 2010 .

[10]  Barry D. Davidson,et al.  Life Prediction Methodology for Composite Structures. Part II—Spectrum Fatigue , 1997 .

[11]  G. Sendeckyj,et al.  Fitting Models to Composite Materials Fatigue Data , 1981 .

[12]  T. Adam,et al.  Life prediction for fatigue of T800/5245 carbon-fibre composites: I. Constant-amplitude loading , 1994 .

[13]  S. Joshi,et al.  Environmental durability of glass fiber epoxy composites filled with core–shell polymer particles , 2016 .

[14]  Theodore P. Philippidis,et al.  Residual strength after fatigue in composites: Theory vs. experiment , 2007 .

[15]  T. M. Dick,et al.  Prediction of fatigue resistance of short-fibre-reinforced polymers , 2009 .

[16]  Norbert Mueller,et al.  Simulation of fatigue failure in composite axial compressor blades , 2011 .

[17]  M. Shokrieh,et al.  A unified fatigue life model based on energy method , 2006 .

[18]  John J. Lesko,et al.  Philosophies for Assessing Durability of Commercial and Infrastructure Composite Systems , 2002 .

[19]  Roham Rafiee,et al.  Stochastic fatigue analysis of glass fiber reinforced polymer pipes , 2017 .

[20]  Lin Ye,et al.  On fatigue damage accumulation and material degradation in composite materials , 1989 .

[21]  M. Owen,et al.  The accumulation of damage in a glass-reinforced plastic under tensile and fatigue loading , 1972 .

[22]  Zvi Hashin,et al.  Cumulative damage theory for composite materials: Residual life and residual strength methods , 1985 .

[23]  Massimiliano Giorgio,et al.  Modeling the residual strength of carbon fiber reinforced composites subjected to cyclic loading , 2015 .

[24]  B. Amirzadeh,et al.  A computational framework for the analysis of rain-induced erosion in wind turbine blades, part I: Stochastic rain texture model and drop impact simulations , 2017 .

[25]  H. Hahn,et al.  Proof Testing of Composite Materials , 1975 .

[26]  Pc Chou,et al.  Degradation and Sudden-Death Models of Fatigue of Graphite/Epoxy Composites , 1979 .

[27]  I. Ashcroft,et al.  Strength wearout of adhesively bonded joints under constant amplitude fatigue , 2009 .

[28]  S Anbu,et al.  COMPARATIVE STUDY ON VEHICLE DETECTION TECHNIQUES IN AERIAL SURVEILLANCE , 2013 .

[29]  G. N. Labeas,et al.  Fatigue damage accumulation and residual strength assessment of CFRP laminates , 2004 .

[30]  M. Shokrieh,et al.  Residual stiffness in cross-ply laminates subjected to cyclic loading , 2008 .

[31]  Larry Lessard,et al.  Progressive Fatigue Damage Modeling of Composite Materials, Part I: Modeling , 2000 .

[32]  Barry D. Davidson,et al.  Life Prediction Methodology for Composite Structures. Part I—Constant Amplitude and Two-Stress Level Fatigue , 1997 .

[33]  J. Halpin,et al.  Kinetic fracture models and structural reliability , 1972 .

[34]  Haiyan Bie,et al.  Fatigue life evaluation of high pressure hydrogen storage vessel , 2010 .

[35]  T. Adam,et al.  A Power Law Fatigue Damage Model for Fibre-Reinforced Plastic Laminates , 1986 .

[36]  B. Amirzadeh,et al.  A computational framework for the analysis of rain-induced erosion in wind turbine blades, part II: Drop impact-induced stresses and blade coating fatigue life , 2017 .

[37]  W. Hwang,et al.  Fatigue of Composites—Fatigue Modulus Concept and Life Prediction , 1986 .

[38]  Dimitrios G. Pavlou,et al.  A one-parameter nonlinear fatigue damage accumulation model , 2017 .

[39]  Larry Lessard,et al.  Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments — I. Modelling , 1997 .

[40]  Arthur J. Helmicki,et al.  CLOSE LOOK AT CONSTRUCTION ISSUES AND PERFORMANCE OF FOUR FIBER-REINFORCED POLYMER COMPOSITE BRIDGE DECKS , 2004 .

[41]  Shahram Sarkani,et al.  Comparative Study of Nonlinear Damage Accumulation Models in Stochastic Fatigue of FRP Laminates , 2001 .

[42]  H. Whitworth,et al.  A stiffness degradation model for composite laminates under fatigue loading , 1997 .

[43]  J. N. Yang,et al.  Modulus reduction and fatigue damage of matrix dominated composite laminates , 1992 .

[44]  Lj Broutman,et al.  A New Theory to Predict Cumulative Fatigue Damage in Fiberglass Reinforced Plastics , 1972 .

[45]  Yoshihiko Sugiyama,et al.  Investigation of fatigue life for a medium scale composite wind turbine blade , 2006 .