Computation of structural invariants of generalized state-space systems

In this paper, we develop an algorithm for computing the zeros of a generalized state-space model described by the matrix 5-tuple (E,A, B, C, D), where E may be a singular matrix but det (A - hE) ¢- 0. The characterization of these zeros is based on the system matrix of the corresponding 5-tuple, Both the characterization and the computational algorithm are extensions of equivalent results for state-space models described by the 4-tuples (A,B, C,D). We also extend these results to the computation of infinite zeros, and left and right minimal indices of the system matrix. Several non-trivial numerical examples are included to illustrate the proposed results.

[1]  S. Wang,et al.  An algorithm for the calculation of transmission zeros of the system (C, A, B, D) using high gain output feedback , 1978 .

[2]  T. Chan Rank revealing QR factorizations , 1987 .

[3]  Alan Willsky,et al.  Linear smoothing for descriptor systems , 1984, The 23rd IEEE Conference on Decision and Control.

[4]  P. Dooren The generalized eigenstructure problem in linear system theory , 1981 .

[5]  B. Kouvaritakis,et al.  Geometric approach to analysis and synthesis of system zeros Part 1. Square systems , 1976 .

[6]  Andras Varga,et al.  Computation of Zeros of Generalized State-Space Systems , 1991 .

[7]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[8]  E. Davison,et al.  Properties and calculation of transmission zeros of linear multivariable systems , 1974, Autom..

[9]  P. Dooren,et al.  The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .

[10]  Leon O. Chua,et al.  Computer-Aided Analysis Of Electronic Circuits , 1975 .

[11]  James Hardy Wilkinson,et al.  Linear Differential Equations and Kronecker's Canonical Form , 1978 .

[12]  P. Van Dooren,et al.  Characterization and computation of transmission zeros of singular multivariable systems , 1990, 29th IEEE Conference on Decision and Control.

[13]  Frank L. Lewis,et al.  Preliminary Notes on Optimal Control for Singular Systems , 1985 .

[14]  T. Kailath,et al.  Properties of the system matrix of a generalized state-space system , 1978 .

[15]  T. Kailath,et al.  A generalized state-space for singular systems , 1981 .

[16]  S. Campbell Singular Systems of Differential Equations , 1980 .

[17]  Paul Van Dooren,et al.  Computation of zeros of linear multivariable systems , 1980, Autom..

[18]  Alan J. Laub,et al.  The linear-quadratic optimal regulator for descriptor systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[19]  D. Cobb Controllability, observability, and duality in singular systems , 1984 .

[20]  Andras Varga NUMERICAL ALGORITHMS AND SOFTWARE TOOLS FOR ANALYSIS AND MODELLING OF DESCRIPTOR SYSTEMS , 1992 .

[21]  P. Dooren,et al.  An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  Rajnikant V. Patel,et al.  Computation of minimal-order realizations of generalized state-space systems , 1989 .

[24]  F. Lewis A survey of linear singular systems , 1986 .

[25]  P. Van Dooren,et al.  A class of fast staircase algorithms for generalized state-space systems , 1986, 1986 American Control Conference.

[26]  Rajnikant V. Patel,et al.  Minimal Order Generalized State Space Representation of Singular Systems , 1989, American Control Conference.

[27]  T. Kailath,et al.  Properties of the system matrix of a generalized state-space system , 1980, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[28]  D. Luenberger Dynamic equations in descriptor form , 1977 .

[29]  C. Desoer,et al.  Degenerate networks and minimal differential equations , 1975 .

[30]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[31]  Petar V. Kokotovic,et al.  Singular perturbations and time-scale methods in control theory: Survey 1976-1983 , 1982, Autom..

[32]  H. Rosenbrock,et al.  Contributions to a hierarchical theory of systems , 1974 .

[33]  Ferdinand Svaricek,et al.  Computation of the structural invariants of linear multivariable systems with an extended version of the program zeros , 1985 .

[34]  F. Lewis Fundamental, reachability, and observability matrices for discrete descriptor systems , 1985 .

[35]  P. Bernhard On Singular Implicit Linear Dynamical Systems , 1982 .

[36]  Charles A. Desoer,et al.  Zeros and poles of matrix transfer functions and their dynamical interpretation , 1974 .

[37]  G. Stewart Introduction to matrix computations , 1973 .

[38]  P. Misra Hessenberg-triangular reduction and transfer function matrices of singular systems , 1989 .

[39]  G. Miminis Deflation in eigenvalue assignment of descriptor systems using state feedback , 1993, IEEE Trans. Autom. Control..

[40]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .