Insight into external electric field dependent photoinduced intermolecular charge transport in BHJ solar cell materials

External electric field dependent photoinduced intermolecular charge transfer in BHJ solar cell materials was theoretically investigated, including the influence of the external electric field on the electronic coupling, the reorganization energy and free energy change of the electron transfer. The theoretical approach not only promotes a deeper understanding of the connection between the external electric field, chemical structure and optical and electronic properties of the donor⋯acceptor system, but also can be developed for the rational design of a novel conjugated system for organic solar cells.

[1]  Eric Vauthey,et al.  Exciton formation, relaxation, and decay in PCDTBT. , 2010, Journal of the American Chemical Society.

[2]  Hongwei Sun,et al.  Semitransparent polymer solar cells with 5% power conversion efficiency using photonic crystal reflector. , 2014, ACS applied materials & interfaces.

[3]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[4]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[5]  J. Brédas,et al.  Photoinduced charge generation and recombination dynamics in model donor/acceptor pairs for organic solar cell applications: a full quantum-chemical treatment. , 2005, Journal of the American Chemical Society.

[6]  Vladimir Dyakonov,et al.  Polymer–fullerene bulk heterojunction solar cells , 2010, 1003.0359.

[7]  Jean-Luc Brédas,et al.  Polarization energies in oligoacene semiconductor crystals. , 2008, Journal of the American Chemical Society.

[8]  A. Troisi,et al.  Absolute Rate of Charge Separation and Recombination in a Molecular Model of the P3HT/PCBM Interface , 2011 .

[9]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[10]  K. Seki,et al.  Rigorous calculation of electric field effects on the free energy change of the electron transfer reaction , 2003 .

[11]  Jean Manca,et al.  Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells , 2010 .

[12]  Kohn,et al.  Local density-functional theory of frequency-dependent linear response. , 1985, Physical review letters.

[13]  Mengtao Sun,et al.  Theoretical Characterization of the PC60BM:PDDTT Model for an Organic Solar Cell , 2011 .

[14]  W. Shen,et al.  Molecular design of donor–acceptor conjugated copolymers based on C-, Si- and N-bridged dithiophene and thienopyrroledione derivatives units for organic solar cells , 2014 .

[15]  Dieter Meissner,et al.  Organic Solar Cells , 1991 .

[16]  Rudolph A. Marcus,et al.  Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture) , 1993 .

[17]  Mengtao Sun,et al.  Comparison of the electronic structure of PPV and its derivative DIOXA-PPV , 2006 .

[18]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[19]  G. Cerullo,et al.  Hot exciton dissociation in polymer solar cells. , 2013, Nature materials.

[20]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[21]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[22]  Helge Lemmetyinen,et al.  An Extremely Small Reorganization Energy of Electron Transfer in Porphyrin−Fullerene Dyad , 2001 .

[23]  Garry Rumbles,et al.  Excitons in nanoscale systems , 2006, Nature materials.

[24]  Valentin D. Mihailetchi,et al.  Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells , 2005 .

[25]  Kurt Warncke,et al.  Nature of biological electron transfer , 1992, Nature.

[26]  David Beljonne,et al.  The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors , 2012, Science.

[27]  M. Hilczer,et al.  Electric field effects on fluorescence quenching due to electron transfer , 2001 .

[28]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[29]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[30]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[31]  Carlos Silva,et al.  Exciton regeneration at polymeric semiconductor heterojunctions. , 2004, Physical review letters.

[32]  Alessandro Troisi,et al.  Evaluation of the external reorganization energy of polyacenes , 2010 .

[33]  Mm Martijn Wienk,et al.  Electron Transport in a Methanofullerene , 2003 .

[34]  R. Chitta,et al.  Corrole-fullerene dyads: formation of long-lived charge-separated states in nonpolar solvents. , 2008, Journal of the American Chemical Society.

[35]  V. Sundström,et al.  Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. , 2010, Journal of the American Chemical Society.

[36]  Yingying Fu,et al.  Fine tuning of the PCDTBT-OR:PC71BM blend nanoscale phase separation via selective solvent annealing toward high-performance polymer photovoltaics , 2013, Nanotechnology.

[37]  Jean-Luc Brédas,et al.  Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry. , 2009, Journal of the American Chemical Society.

[38]  M. Ratner,et al.  Time-Dependent Theory of the Rate of Photo-induced Electron Transfer , 2011 .

[39]  T. Pullerits,et al.  Bacteriochlorophyll in Electric Field , 2003 .

[40]  Z. Su,et al.  Theoretical study on charge transport properties of cyanovinyl-substituted oligothiophenes , 2012 .

[41]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[42]  Ye Tao,et al.  Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. , 2008, Journal of the American Chemical Society.

[43]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[44]  A. Troisi,et al.  Long-range exciton dissociation in organic solar cells , 2012, Proceedings of the National Academy of Sciences.

[45]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[46]  P. E. Keivanidis,et al.  Visualizing charge separation in bulk heterojunction organic solar cells , 2013, Nature Communications.

[47]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[48]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[49]  C. Castiglioni,et al.  Resistive molecular memories: influence of molecular parameters on the electrical bistability. , 2009, Journal of the American Chemical Society.

[50]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[51]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[52]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[53]  Olle Inganäs,et al.  On the origin of the open-circuit voltage of polymer-fullerene solar cells. , 2009, Nature materials.

[54]  I. Hill,et al.  Derivation of the open-circuit voltage of organic solar cells , 2014 .

[55]  Keli Han,et al.  Rational design of d-PeT phenylethynylated-carbazole monoboronic acid fluorescent sensors for the selective detection of alpha-hydroxyl carboxylic acids and monosaccharides. , 2009, Journal of the American Chemical Society.

[56]  David Beljonne,et al.  Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. , 2004, Chemical reviews.

[57]  Fei Huang,et al.  Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells , 2013 .

[58]  Mengtao Sun,et al.  External Electric Field-Dependent Photoinduced Charge Transfer in a Donor-Acceptor System for an Organic Solar Cell , 2013 .

[59]  Gang Li,et al.  High-performance semi-transparent polymer solar cells possessing tandem structures , 2013 .

[60]  Christoph J. Brabec,et al.  Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors , 2002 .