Polarimetry of cosmic gamma-ray sources above $e^+e^-$ pair creation threshold

We examine the potential for gamma-ray conversion to electron-positron pairs, either in the field of a nucleus or of an electron of a detector, to measure the fraction P of linear polarization of cosmic gamma sources. For this purpose we implement, validate and use an event generator based on the HELAS amplitude calculator and on the SPRING event generator. We characterize several ways to measure P. Past proposals to increase the polarization sensitivity by the selection of a fraction of the events in a subset of the available phase space are found to be ine cient, due to the loss in statistics. The use of an optimal variable that includes the full 5D probability density function is found to improve the precision of the measurement of P of a factor of approximately 2. We then study the dilution of the asymmetry that parametrize the degradation of the precision due to experimental e ects such as multiple scattering. In a detector made with a succession of converter slabs and tracker foils, the dependence of the dilution is found to be di erent from that predicted assuming a given (the most probable) value of the pair opening angle. The limitations of a slab detector are avoided by the use of an active target, in which conversion and tracking are performed by the same device, in which case the dilution of the measurement of P is found to be manageable. Based on a realistic sizing of the detector, and for an e ective exposure of 1 year, we estimate the precision for a Crab-like source on the full energy range to be approximately 1.4 %.

[1]  H. Olsen Opening Angles of Electron-Positron Pairs , 1963 .

[2]  James M. Ryan,et al.  Status and prospects for polarimetry in high energy astrophysics , 2004 .

[3]  A. Sakharov,et al.  Constraining axion by polarized prompt emission from gamma ray bursts , 2007, 0708.2646.

[4]  Markus Boettcher,et al.  X-RAY AND GAMMA-RAY POLARIZATION IN LEPTONIC AND HADRONIC JET MODELS OF BLAZARS , 2013, 1307.4187.

[5]  T. Berlin,et al.  On the Detection of $gamma$-Ray Polarization by Pair Production , 1950 .

[6]  P. F. Bloser,et al.  A concept for a high-energy gamma-ray polarimeter , 2003, SPIE Optics + Photonics.

[7]  Eli Waxman,et al.  Astronomy: New direction for γ-rays , 2003, Nature.

[8]  M. Davier,et al.  The optimal method for the measurement of tau polarization , 1993 .

[9]  J. Stephen,et al.  Polarized Gamma-Ray Emission from the Crab , 2008, Science.

[10]  Soni,et al.  Analysis for magnetic moment and electric dipole moment form factors of the top quark via e+e--->tt-bar. , 1992, Physical review. D, Particles and fields.

[11]  UK,et al.  Optical polarization of the Crab pulsar: precision measurements and comparison to the radio emission , 2008, 0901.4559.

[12]  O. Williams,et al.  Observations of the intense and ultra-long burst GRB 041219a with the Germanium spectrometer on INTEGRAL , 2006, astro-ph/0604455.

[13]  P. Weilhammer,et al.  A pair polarimeter for linearly polarized high energy photons , 2002 .

[14]  S. Covino,et al.  The polarized gamma-ray burst GRB 061122 , 2013, 1303.4186.

[15]  C. I. O. Technology.,et al.  Polarization of Prompt Gamma-Ray Burst Emission: Evidence for Electromagnetically Dominated Outflow , 2003, astro-ph/0305410.

[16]  K. Mork PAIR PRODUCTION BY PHOTONS ON ELECTRONS. , 1967 .

[17]  W. Heitler,et al.  The quantum theory of radiation , 1936 .

[18]  I. Grenier,et al.  Polarization of the Crab Pulsar and Nebula as Observed by the INTEGRAL/IBIS Telescope , 2008, 0809.1292.

[19]  A. Strong,et al.  DIFFUSE EMISSION MEASUREMENT WITH THE SPECTROMETER ON INTEGRAL AS AN INDIRECT PROBE OF COSMIC-RAY ELECTRONS AND POSITRONS , 2011, 1107.0200.

[20]  I. Endo,et al.  Exact evaluation of triplet photoproduction , 1993 .

[21]  Approaching the parameter estimation quality of maximum likelihood via generalized moments , 2000, physics/0001019.

[22]  Z. Chang,et al.  GAMMA-RAY POLARIZATION INDUCED BY COLD ELECTRONS VIA COMPTON PROCESSES , 2013, 1301.6818.

[23]  MPE,et al.  The Crab pulsar in the 0.75-30 MeV range as seen by CGRO COMPTEL , 2001, astro-ph/0109200.

[24]  V. Brisson,et al.  Performance of a prototype solid neon and solid argon calorimeter , 1983 .

[25]  Stefano Liberati,et al.  Lorentz violation at high energy: Concepts, phenomena, and astrophysical constraints , 2006 .

[26]  H. Krawczynski THE POLARIZATION PROPERTIES OF INVERSE COMPTON EMISSION AND IMPLICATIONS FOR BLAZAR OBSERVATIONS WITH THE GEMS X-RAY POLARIMETER , 2011, 1109.2186.

[27]  John Richard Mattox,et al.  Analysis of the COS B data for evidence of linear polarization of Vela pulsar gamma rays , 1990 .

[28]  A. M. Sirunyan,et al.  Experimental study of photon beam polarimetry based on nuclear e+e pair production in an amorphous target , 2007 .

[29]  Vlasios Vasileiou,et al.  FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG , 2011 .

[30]  Yoshihito Namito,et al.  The EGS5 code system , 2005 .

[31]  J. H. Hubbell,et al.  Pair, Triplet, and Total Atomic Cross Sections (and Mass Attenuation Coefficients) for 1 MeV-100 GeV Photons in Elements Z=1 to 100, , 1980 .

[32]  G. O. Depaola,et al.  Pair production by γ-rays on electrons , 2011 .

[33]  Leonard C. Maximon,et al.  PHOTON AND ELECTRON POLARIZATION IN HIGH-ENERGY BREMSSTRAHLUNG AND PAIR PRODUCTION WITH SCREENING , 1959 .

[34]  J. Wheeler,et al.  Influence of Atomic Electrons on Radiation and Pair Production , 1939 .

[35]  I. Yadigaroglu Sensitivity of γ-ray detectors to polarization , 1997 .

[36]  Czech Republic,et al.  Thermal disc emission from a rotating black hole: X-ray polarization signatures , 2008, 0809.0418.

[37]  L. Maximon,et al.  Measurement of Linear Photon Polarization by Pair Production , 1962 .

[38]  Walter R. Innes,et al.  Some formulas for estimating tracking errors , 1993 .

[39]  Martin C. Weisskopf,et al.  Astrophysical implications and observational prospects of X-ray polarimetry , 1988 .

[40]  Hans A. Bethe,et al.  RECOIL MOMENTUM DISTRIBUTION IN ELECTRON PAIR PRODUCTION , 1959 .

[41]  Zdenka Kuncic,et al.  X-ray polarization in relativistic jets , 2009, 0902.1562.

[42]  Hitoshi Murayama,et al.  HELAS: HELicity amplitude subroutines for Feynman diagram evaluations , 1992 .

[43]  D. Bernard,et al.  TPC in γ-ray astronomy above pair-creation threshold , 2012, 1211.1534.

[44]  Gamma-ray bursts and the fireball model , 1998, astro-ph/9810256.

[45]  Eli Waxman New direction for gamma-rays , 2003 .

[46]  Takashi Okajima,et al.  White Paper on GEMS Study of Polarized X-rays from Neutron Stars , 2013, 1301.5514.

[47]  Yu. D. Kotov,et al.  Methods of measurement of gamma-ray polarization , 1989 .

[48]  V. Kaspi,et al.  Isolated Neutron Stars , 2004, astro-ph/0402136.

[49]  S. Kawabata,et al.  A new version of the multi-dimensional integration and event generation package BASES/SPRING , 1995 .

[50]  S. Kawabata,et al.  A New Monte Carlo Event Generator for High-Energy Physics , 1986 .

[51]  N. F. Sir Mott,et al.  The theory of atomic collisions , 1933 .

[52]  Alan D. Martin,et al.  Review of Particle Physics: Particle data group , 2012 .

[53]  R. Frühwirth Application of Kalman filtering to track and vertex fitting , 1987 .