Single-cell microelectrochemistry.

Needle-type voltammetric ultramicroelectrodes show exceptional sensitivity for the detection of redox-active substances, rapid response times, and total tip diameters in the lower micrometer range. These characteristics make them ideal for analyzing the chemical environment and the activity of isolated living cells, which in their various forms are the microscopic building blocks of human, animal, and other life forms. Prerequisites for successful local electrochemical measurements in the vicinity of the tiny biological objects are gentle, stress-free, and accurate placement of the tip at the cell, exact knowledge of the tip-to-cell distance, and appropriate selectivity of the ultramicroelectrode tip for species that may change in concentration as a result of cellular actions such as growth, respiration, or transmitter and metabolite uptake or release. The concepts of single-cell microelectrochemistry are considered and an overview is given of recent results on the fundamental mechanisms of cell functions.

[1]  R. Wightman,et al.  Interplay between membrane dynamics, diffusion and swelling pressure governs individual vesicular exocytotic events during release of adrenaline by chromaffin cells. , 2000, Biochimie.

[2]  W. Schuhmann,et al.  Detection of nitric oxide release from single cells by using constant-distance-mode scanning electrochemical microscopy. , 2006, Angewandte Chemie.

[3]  Jonathan A. Stamford,et al.  In vivo voltammetry: Some methodological considerations , 1986, Journal of Neuroscience Methods.

[4]  John R. C Christensen,et al.  Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty , 1997, Brain Research.

[5]  T. Südhof The synaptic vesicle cycle , 2004 .

[6]  S. Rotenberg,et al.  Scanning electrochemical microscopy of living cells: different redox activities of nonmetastatic and metastatic human breast cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  W. Schuhmann,et al.  Fabrication and Characterization of Needle‐Type , 2002 .

[8]  J. Heinze Elektrochemie mit Ultramikroelektroden , 1993 .

[9]  R. Kennedy,et al.  Comparison of amperometric methods for detection of exocytosis from single pancreatic beta-cells of different species. , 1999, Analytical chemistry.

[10]  P. Nair,et al.  A microelectrode for measuring intracellular pH. , 1967, Advances in experimental medicine and biology.

[11]  D. Loerke,et al.  The last few milliseconds in the life of a secretory granule , 1998, European Biophysics Journal.

[12]  M. Lindau,et al.  Relationship between fusion pore opening and release during mast cell exocytosis studied with patch amperometry. , 2003, Biochemical Society transactions.

[13]  D. Sulzer,et al.  Intracellular Patch Electrochemistry: Regulation of Cytosolic Catecholamines in Chromaffin Cells , 2003, The Journal of Neuroscience.

[14]  W. Schuhmann,et al.  Detektion der Ausschüttung von NO an einzelnen Zellen mit elektrochemischer Rastermikroskopie in konstantem Abstand , 2006 .

[15]  M. A. Brioso,et al.  Automatic analysis for amperometrical recordings of exocytosis , 2000, Journal of Neuroscience Methods.

[16]  G. Wittstock,et al.  Scanning electrochemical microscopy for direct imaging of reaction rates. , 2007, Angewandte Chemie.

[17]  Ricardo Borges,et al.  New Approaches for Analysis of Amperometrical Recordings , 2002, Annals of the New York Academy of Sciences.

[18]  D. Koh Carbon fiber amperometry in the study of ion channels and secretion. , 2006, Methods in molecular biology.

[19]  Ralph N. Adams,et al.  In vivo electrochemical measurements in the CNS , 1990, Progress in Neurobiology.

[20]  K. Gillis Techniques for Membrane Capacitance Measurements , 1995 .

[21]  S. Kounaves,et al.  Microfabricated Ultramicroelectrode Arrays: Developments, Advances, and Applications in Environmental Analysis , 2000 .

[22]  W. Betz,et al.  Monitoring secretion in real time: capacitance, amperometry and fluorescence compared , 1997, Trends in Neurosciences.

[23]  Paul Schanda,et al.  Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. , 2005, Journal of the American Chemical Society.

[24]  P. Garris,et al.  In vivo interaction of cocaine with the dopamine transporter as measured by voltammetry. , 2003, European journal of pharmacology.

[25]  R. Wightman,et al.  Monitoring catecholamines at single cells , 1995 .

[26]  E Neher,et al.  Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. López-Barneo,et al.  Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  W. Zhang,et al.  Fabrication, characterization, and potential application of carbon fiber cone nanometer-size electrodes. , 1996, Analytical chemistry.

[29]  K. Gillis,et al.  On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes. , 2006, Analytical chemistry.

[30]  P. Unwin,et al.  Scanning electrochemical microscopy: beyond the solid/liquid interface , 1999 .

[31]  Robert H. Chow,et al.  Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells , 1992, Nature.

[32]  J. Fuentealba,et al.  Amperometric study of the kinetics of exocytosis in mouse adrenal slice chromaffin cells: physiological and methodological insights. , 2006, Journal of neurophysiology.

[33]  J. Henry,et al.  Physical techniques for the study of exocytosis in isolated cells. , 1998, Biochimie.

[34]  Wei-Hua Huang,et al.  Transport, location, and quantal release monitoring of single cells on a microfluidic device. , 2004, Analytical chemistry.

[35]  J. Millar,et al.  Improved methods for construction of carbon fibre electrodes for extracellular spike recording , 2001, Journal of Neuroscience Methods.

[36]  James E. Stewart,et al.  Refractive index gradients in stopped-flow and temperature-jump kinetics and liquid chromatography , 1981 .

[37]  A. Ewing,et al.  Chemical profiles and monitoring dynamics at an individual nerve cell in Planorbis corneus with electrochemical detection. , 1999, Journal of pharmaceutical and biomedical analysis.

[38]  T. Matsue,et al.  Dual Imaging of Topography and Photosynthetic Activity of a Single Protoplast by Scanning Electrochemical Microscopy , 1999 .

[39]  D M Porterfield,et al.  The self-referencing oxygen-selective microelectrode: detection of transmembrane oxygen flux from single cells. , 1999, The Journal of experimental biology.

[40]  Anando Devadoss,et al.  Steady-state detection of cholesterol contained in the plasma membrane of a single cell using lipid bilayer-modified microelectrodes incorporating cholesterol oxidase. , 2004, Journal of the American Chemical Society.

[41]  L. Tauc,et al.  Changes in serotonin concentration in a living neurone: a study by on-line intracellular voltammetry , 1987, Brain Research.

[42]  P. Unwin,et al.  FABRICATION AND CHARACTERISATION OF NANOMETRE-SIZED PLATINUM ELECTRODES FOR VOLTAMMETRIC ANALYSIS AND IMAGING , 1999 .

[43]  P. Rorsman,et al.  Compound exocytosis in voltage-clamped mouse pancreatic β-cells revealed by carbon fibre amperometry , 2000, Pflügers Archiv.

[44]  S. Rotenberg,et al.  Scanning Electrochemical Microscopy: Detection of Human Breast Cancer Cells by Redox Environment , 2004, Journal of Mammary Gland Biology and Neoplasia.

[45]  Manfred Lindau,et al.  Patch amperometry: high-resolution measurements of single-vesicle fusion and release , 2005, Nature Methods.

[46]  E. Neher,et al.  Electrophysiological and electrochemical techniques for studying control mechanisms of secretion in neuroendocrine cells , 1995 .

[47]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[48]  H. Shiku,et al.  Real-time monitoring of reactive oxygen species production during differentiation of human monocytic cell lines (THP-1) , 2005 .

[49]  Khajak Berberian,et al.  Electrochemical imaging of fusion pore openings by electrochemical detector arrays. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  P. Kissinger,et al.  Voltammetry in brain tissue--a new neurophysiological measurement. , 1973, Brain research.

[51]  D. Loerke,et al.  Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  P. Unwin,et al.  Noncontact electrochemical imaging with combined scanning electrochemical atomic force microscopy. , 2001, Analytical chemistry.

[53]  A. Ewing,et al.  Voltammetric measurement of oxygen in single neurons using platinized carbon ring electrodes. , 1992, Analytical chemistry.

[54]  P. Garris,et al.  Sub-second changes in accumbal dopamine during sexual behavior in male rats , 2001, Neuroreport.

[55]  Anna L Whitworth,et al.  Scanning electrochemical microscopy: principles and applications to biophysical systems , 2006, Physiological measurement.

[56]  Victoria J Allan,et al.  Light Microscopy Techniques for Live Cell Imaging , 2003, Science.

[57]  R. Wightman,et al.  Transient changes in mesolimbic dopamine and their association with ‘reward’ , 2002, Journal of neurochemistry.

[58]  A. Bard,et al.  Scanning electrochemical microscopy. Introduction and principles , 1989 .

[59]  Byron F. Brehm-Stecher,et al.  Single-Cell Microbiology: Tools, Technologies, and Applications , 2004, Microbiology and Molecular Biology Reviews.

[60]  W. Kutner,et al.  Microelectrodes. Definitions, characterization, and applications (Technical report) , 2000 .

[61]  Koichi Aoki,et al.  Theory of ultramicroelectrodes , 1993 .

[62]  Alan Morgan,et al.  Secretory granule exocytosis. , 2003, Physiological reviews.

[63]  S. Lipton,et al.  Crosstalk between Nitric Oxide and Zinc Pathways to Neuronal Cell Death Involving Mitochondrial Dysfunction and p38-Activated K+ Channels , 2004, Neuron.

[64]  F. Prinz,et al.  Nanoscale electrochemical probes for single cell analysis , 2006 .

[65]  T. Südhof,et al.  Synaptic vesicles and exocytosis. , 1994, Annual review of neuroscience.

[66]  Y. Hirano,et al.  Topographic, electrochemical, and optical images captured using standing approach mode scanning electrochemical/optical microscopy. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[67]  E. Neher,et al.  Regulation of Releasable Vesicle Pool Sizes by Protein Kinase A-Dependent Phosphorylation of SNAP-25 , 2004, Neuron.

[68]  A. Ewing,et al.  Chemical analysis of single cells and exocytosis. , 1997, Critical reviews in neurobiology.

[69]  Zhuan Zhou,et al.  Timing of Dense-Core Vesicle Exocytosis Depends on the Facilitation L-Type Ca Channel in Adrenal Chromaffin Cells , 1998, The Journal of Neuroscience.

[70]  R. Wightman,et al.  Spatio-temporal resolution of exocytosis from individual cells. , 1998, Annual review of biophysics and biomolecular structure.

[71]  H. Horstmann,et al.  Transport, docking and exocytosis of single secretory granules in live chromaffin cells , 1997, Nature.

[72]  Christian Amatore,et al.  When voltammetry reaches nanoseconds. , 2005, Analytical Chemistry.

[73]  R. Burgoyne,et al.  Amisyn Regulates Exocytosis and Fusion Pore Stability by Both Syntaxin-dependent and Syntaxin-independent Mechanisms* , 2005, Journal of Biological Chemistry.

[74]  E. Neher,et al.  Presynaptic calcium and control of vesicle fusion , 2005, Current Opinion in Neurobiology.

[75]  A. Bard,et al.  Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[76]  C. G. Zoski Ultramicroelectrodes: Design, Fabrication, and Characterization , 2002 .

[77]  Edgar A Arriaga,et al.  Chemical microscopy applied to biological systems. , 2006, Analytical chemistry.

[78]  R. Wightman,et al.  Improving data acquisition for fast-scan cyclic voltammetry. , 1999, Analytical chemistry.

[79]  R. Wightman,et al.  Quantal corelease of histamine and 5-hydroxytryptamine from mast cells and the effects of prior incubation. , 1998, Biochemistry.

[80]  W. Betz,et al.  The synaptic vesicle cycle. , 1998, Annual review of physiology.

[81]  T. Martin Tuning exocytosis for speed: fast and slow modes. , 2003, Biochimica et biophysica acta.

[82]  J. Besenhard,et al.  Preparation of Voltammetric and Potentiometric Carbon Fibre Microelectrodes , 1991 .

[83]  T. Malinski,et al.  Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor , 1992, Nature.

[84]  Xiaoya Hu,et al.  Fabrication of nanometre-sized platinum electrodes by controllable electrochemical deposition. , 2006, Talanta.

[85]  Andrew G. Ewing,et al.  Analytical chemistry in microenvironments: single nerve cells , 1992 .

[86]  B. Hille,et al.  Modulation by neurotransmitters of catecholamine secretion from sympathetic ganglion neurons detected by amperometry. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Fwu-Shan Sheu,et al.  In situ temporal detection of dopamine exocytosis from L-dopa-incubated MN9D cells using microelectrode array-integrated biochip , 2006 .

[88]  T. Martin,et al.  Ca2+-Dependent Activator Protein for Secretion Is Critical for the Fusion of Dense-Core Vesicles with the Membrane in Calf Adrenal Chromaffin Cells , 1999, The Journal of Neuroscience.

[89]  Thomas Voets,et al.  CAPS1 Regulates Catecholamine Loading of Large Dense-Core Vesicles , 2005, Neuron.

[90]  C. Caputo,et al.  Amperometric characterization of exocytotic events from single mast cells: dependence on external and internal Ca++ sources. , 2001, Cell calcium.

[91]  R. Adams,et al.  Voltammetry in brain tissue: the fate of injected 6-hydroxydopamine. , 1974, Brain research.

[92]  B. Mizaikoff,et al.  Integrating an ultramicroelectrode in an AFM cantilever: combined technology for enhanced information. , 2001, Analytical chemistry.

[93]  J. Oni,et al.  Entrapment of Metalloporphyrins Within an Electrodeposition Paint Layer as a Basis for Developing a Nitric Oxide Sensor , 2004 .

[94]  D. Wong,et al.  Voltammetric studies of carbon disk electrodes with submicrometer-sized structural diameters , 1995 .

[95]  M. I. Montenegro,et al.  Microelectrodes : theory and applications , 1991 .

[96]  G. Henze,et al.  Characteristic behavior of macro‐, semimicro‐ and microelectrodes in voltammetric and chronoamperometric measurements , 1997 .

[97]  E. Pothos,et al.  Presynaptic Recording of Quanta from Midbrain Dopamine Neurons and Modulation of the Quantal Size , 1998, The Journal of Neuroscience.

[98]  A. Ewing,et al.  Characterization of glucose microsensors for intracellular measurements. , 1992, Analytical chemistry.

[99]  R. Wightman,et al.  Neurochemistry and electroanalytical probes. , 2002, Current opinion in chemical biology.

[100]  M. Mirkin High resolution studies of heterogeneous processes with the scanning electrochemical microscope , 1999 .

[101]  Valerio Annovazzi-Lodi,et al.  In vivo voltammetry: from wire to wireless measurements , 2004, Journal of Neuroscience Methods.

[102]  R. Kennedy,et al.  Amperometric monitoring of chemical secretions from individual pancreatic beta-cells. , 1993, Analytical chemistry.

[103]  J. Barclay,et al.  Calcium-dependent regulation of exocytosis. , 2005, Cell calcium.

[104]  T. Koike,et al.  Immobilized diaphorase surfaces observed by scanning electrochemical microscope with shear force based tip-substrate positioning. , 2005, Analytical chemistry.

[105]  Manfred Lindau,et al.  Patch-clamp techniques for time-resolved capacitance measurements in single cells , 1988, Pflügers Archiv.

[106]  T. Südhof,et al.  Different Effects on Fast Exocytosis Induced by Synaptotagmin 1 and 2 Isoforms and Abundance But Not by Phosphorylation , 2006, The Journal of Neuroscience.

[107]  G. Alvarez de Toledo,et al.  The exocytotic event in chromaffin cells revealed by patch amperometry , 1997, Nature.

[108]  Catherine Chapuis,et al.  Serotonin Secretion by Human Carcinoid BON Cells , 2004, Annals of the New York Academy of Sciences.

[109]  Timothy D. Strong,et al.  A microelectrode array for real-time neurochemical and neuroelectrical recording in vitro , 2001 .

[110]  Y. Hirano,et al.  Imaging of enzyme activity by scanning electrochemical microscope equipped with a feedback control for substrate-probe distance. , 2003, Bioelectrochemistry.

[111]  W. Schuhmann,et al.  Constant-distance mode scanning electrochemical microscopy (SECM)--Part I: Adaptation of a non-optical shear-force-based positioning mode for SECM tips. , 2003, Chemistry.

[112]  M. Erard,et al.  Dynamics of full fusion during vesicular exocytotic events: release of adrenaline by chromaffin cells. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[113]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[114]  D. Wipf,et al.  Impedance feedback control for scanning electrochemical microscopy. , 2001, Analytical chemistry.

[115]  W. Schuhmann,et al.  Facilitated tip-positioning and applications of non-electrode tips in scanning electrochemical microscopy using a shear force based constant-distance mode. , 2000, Chemistry.

[116]  R. Wightman,et al.  Resolving neurotransmitters detected by fast-scan cyclic voltammetry. , 2004, Analytical chemistry.

[117]  D. Pang,et al.  A method for the fabrication of low-noise carbon fiber nanoelectrodes. , 2001, Analytical chemistry.

[118]  G. Nagy,et al.  Scanning electrochemical microscopy: a new way of making electrochemical experiments , 2000, Fresenius' journal of analytical chemistry.

[119]  A. Ewing,et al.  Correlation between vesicle quantal size and fusion pore release in chromaffin cell exocytosis. , 2005, Biophysical journal.

[120]  J. Heinze Ultramicroelectrodes in Electrochemistry , 1993 .

[121]  E. Neher,et al.  A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse , 2006, Pflügers Archiv.

[122]  R. Wightman,et al.  Dopamine Operates as a Subsecond Modulator of Food Seeking , 2004, The Journal of Neuroscience.

[123]  G. Matthews Synaptic exocytosis and endocytosis: capacitance measurements , 1996, Current Opinion in Neurobiology.

[124]  A. Ewing,et al.  Estimation of Free Dopamine in the Cytoplasm of the Giant Dopamine Cell of Planorbis corneus by Voltammetry and Capillary Electrophoresis , 1990, Journal of neurochemistry.

[125]  J. B. Justice,et al.  Peer Reviewed: Probing Brain Chemistry: Voltammetry Comes of Age , 1996 .

[126]  P. Garris,et al.  Scanning electrochemical microscopy of model neurons: constant distance imaging. , 2005, Analytical chemistry.

[127]  Shoko Iwaki,et al.  Real-time monitoring of histamine released from rat basophilic leukemia (RBL-2H3) cells with a histamine microsensor using recombinant histamine oxidase. , 2002, Analytical biochemistry.

[128]  A. Ewing,et al.  Carbon-ring electrodes with 1-.mu.m tip diameter , 1986 .

[129]  H. Abruña,et al.  Construction of submicrometer voltammetric electrodes , 1990 .

[130]  R. Wightman,et al.  Subsecond dopamine release promotes cocaine seeking , 2003, Nature.

[131]  A. Ewing,et al.  The Effects of Vesicular Volume on Secretion through the Fusion Pore in Exocytotic Release from PC12 Cells , 2004, The Journal of Neuroscience.

[132]  A. Ewing,et al.  Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at the zeptomole level. , 1994, Analytical chemistry.

[133]  F. Mikkers Concentration distributions in capillary zone electrophoresis : CZE in a spreadsheet , 1999 .

[134]  W. Schuhmann,et al.  An advanced biological scanning electrochemical microscope (Bio-SECM) for studying individual living cells , 2004 .

[135]  A. Bard,et al.  Scanning electrochemical microscopy. 21. Constant-current imaging with an autoswitching controller , 1993 .

[136]  R. Chow,et al.  Cylindrically etched carbon-fiber microelectrodes for low-noise amperometric recording of cellular secretion. , 1998, Analytical chemistry.

[137]  D. Bruns,et al.  Real-time measurement of transmitter release from single synaptic vesicles , 1995, Nature.

[138]  Manfred Lindau,et al.  Exocytosis of single chromaffin granules in cell-free inside-out membrane patches , 2003, Nature Cell Biology.

[139]  R. Wightman,et al.  Extinction of Cocaine Self-Administration Reveals Functionally and Temporally Distinct Dopaminergic Signals in the Nucleus Accumbens , 2005, Neuron.

[140]  A. Ewing,et al.  Amperometric analysis of exocytosis at chromaffin cells from genetically distinct mice , 2001, Journal of Neuroscience Methods.

[141]  R. Zucker,et al.  Exocytosis: A Molecular and Physiological Perspective , 1996, Neuron.

[142]  R D O'Neill,et al.  Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo. A review. , 1994, The Analyst.

[143]  A. Vlessidis,et al.  Determination of Nitric Oxide in Biological Samples , 2004 .

[144]  R. Kennedy,et al.  Detection of exocytosis at individual pancreatic beta cells by amperometry at a chemically modified microelectrode. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[145]  W. Smyrl,et al.  Scanning Electrochemical Microscopy with Simultaneous Independent Topography , 1998 .

[146]  M. Jackson,et al.  Fusion Pore Dynamics Are Regulated by Synaptotagmin•t-SNARE Interactions , 2004, Neuron.

[147]  Vesicular Ca(2+) -induced secretion promoted by intracellular pH-gradient disruption. , 2006, Biophysical chemistry.

[148]  J. Oni,et al.  Dual microelectrodes for distance control and detection of nitric oxide from endothelial cells by means of scanning electrochemical microscope. , 2004, Analytical chemistry.

[149]  R. Chow,et al.  A simple method for insulating carbon-fiber microelectrodes using anodic electrophoretic deposition of paint. , 1996, Analytical chemistry.

[150]  J. Drapier,et al.  Monitoring in Real Time with a Microelectrode the Release of Reactive Oxygen and Nitrogen Species by a Single Macrophage Stimulated by its Membrane Mechanical Depolarization , 2006, Chembiochem : a European journal of chemical biology.

[151]  W. Schuhmann,et al.  Combinatorial synthesis of a library of acrylic acid-based polymers and their evaluation as immobilisation matrix for amperometric biosensors , 2004 .

[152]  Vipavee Anupunpisit,et al.  Scanning electrochemical microscopy of model neurons: imaging and real-time detection of morphological changes. , 2003, Analytical chemistry.

[153]  P. Elving Coupling organic and biological reactions with electrochemical measurements for analytical purposes , 1975 .

[154]  P. Washbourne,et al.  Molecular Analysis of SNAP‐25 Function in Exocytosis , 2002, Annals of the New York Academy of Sciences.

[155]  E Neher,et al.  Comparison of secretory responses as measured by membrane capacitance and by amperometry. , 1998, Biophysical journal.

[156]  M. Fillenz In vivo neurochemical monitoring and the study of behaviour , 2005, Neuroscience & Biobehavioral Reviews.

[157]  J. Presley Imaging the secretory pathway: the past and future impact of live cell optical techniques. , 2005, Biochimica et biophysica acta.

[158]  R. Mark Wightman,et al.  Critical guidelines for validation of the selectivity of in-vivo chemical microsensors , 2003 .

[159]  Mathieu Etienne,et al.  In situ formation and scanning electrochemical microscopy assisted positioning of NO-sensors above human umbilical vein endothelial cells for the detection of nitric oxide release , 2003 .

[160]  R. Kennedy,et al.  Exploring single-cell dynamics using chemically-modified microelectrodes , 1995 .

[161]  Zbigniew Stojek,et al.  Peer Reviewed: Voltammetric and Amperometric Detection without Added Electrolyte. , 2000 .

[162]  D. Sulzer,et al.  Analysis of exocytotic events recorded by amperometry , 2005, Nature Methods.

[163]  R. Engstrom,et al.  Measurements within the diffusion layer using a microelectrode probe , 1986 .

[164]  Z. Taha Nitric oxide measurements in biological samples. , 2003, Talanta.

[165]  T. Südhof,et al.  Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[166]  R. Westerink,et al.  Exocytosis: using amperometry to study presynaptic mechanisms of neurotoxicity. , 2004, Neurotoxicology.

[167]  M. Mirkin,et al.  Electroanalytical measurements using the scanning electrochemical microscope , 2000 .

[168]  Z. Zhou,et al.  Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[169]  A. Bard,et al.  Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[170]  C. Lingle,et al.  Activation of GPCRs modulates quantal size in chromaffin cells through Gβγ and PKC , 2005, Nature Neuroscience.

[171]  O. Andreassen,et al.  Mice Deficient in Cellular Glutathione Peroxidase Show Increased Vulnerability to Malonate, 3-Nitropropionic Acid, and 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine , 2000, The Journal of Neuroscience.

[172]  Henry S White,et al.  Alternating current impedance imaging of high-resistance membrane pores using a scanning electrochemical microscope. Application of membrane electrical shunts to increase measurement sensitivity and image contrast. , 2006, Analytical chemistry.

[173]  A. Ewing,et al.  Intracellular Voltammetry with Ultrasmall Carbon Ring Electrodes , 1988 .

[174]  T. Matsue,et al.  Characterization and Imaging of Single Cells with Scanning Electrochemical Microscopy , 2000 .

[175]  J. A. Jankowski,et al.  Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells. Chemical evidence for exocytosis. , 1990, The Journal of biological chemistry.

[176]  J. Millar,et al.  Monitoring exocytosis from single mast cells by fast voltammetry , 1991, Pflügers Archiv.

[177]  A. Bard,et al.  Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. , 2005, Biochemistry.

[178]  R. Adams,et al.  In vivo electrochemistry: behavior of micro electrodes in brain tissue , 1979 .

[179]  H. Pollard,et al.  New Technologies in Exocytosis and Ion Movement , 2002, Annals of the New York Academy of Sciences.

[180]  T. Südhof,et al.  Examining Synaptotagmin 1 Function in Dense Core Vesicle Exocytosis under Direct Control of Ca2+ , 2003, The Journal of general physiology.

[181]  H. Gaub,et al.  Topography feedback mechanism for the scanning electrochemical microscope based on hydrodynamic forces between tip and sample , 1995 .

[182]  D. Bruns,et al.  Detection of transmitter release with carbon fiber electrodes. , 2004, Methods.

[183]  M. Gratzl,et al.  Monitoring drug efflux from sensitive and multidrug-resistant single cancer cells with microvoltammetry. , 1999, Analytical chemistry.

[184]  H. Xiong,et al.  Biological applications of scanning electrochemical microscopy: chemical imaging of single living cells and beyond , 2006, Analytical and bioanalytical chemistry.

[185]  Paul A. Garris,et al.  Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle , 2004, Journal of Neuroscience Methods.

[186]  A. Ewing,et al.  Intracellular Analysis with an Immobilized-Enzyme Glucose Electrode Havine 2-Micrometers Diameter and Subsecond Response Times , 1991 .

[187]  A. Oberhauser,et al.  Simultaneous capacitance and amperometric measurements of exocytosis: a comparison. , 1996, Biophysical journal.

[188]  G. Marrs,et al.  Concepts in imaging and microscopy. Exploring biological structure and function with confocal microscopy. , 1999, The Biological bulletin.

[189]  A. Bard,et al.  Combined scanning electrochemical/optical microscopy with shear force and current feedback. , 2002, Analytical chemistry.

[190]  F. Bedioui,et al.  Electrochemical Nitric Oxide Sensors for Biological Samples – Principle, Selected Examples and Applications , 2003 .

[191]  W. Schuhmann,et al.  Acrylic Acid-Based Copolymers as Immobilization Matrix for Amperometric Biosensors , 2003 .

[192]  A. Ewing,et al.  Characterization of the voltammetric response at intracellular carbon ring electrodes , 1991 .

[193]  R. Wightman,et al.  Vesicular Quantal Size Measured by Amperometry at Chromaffin, Mast, Pheochromocytoma, and Pancreatic β‐Cells , 1996, Journal of neurochemistry.

[194]  V. Annovazzi-Lodi,et al.  An optoelectronic link for bidirectional transmission of biological signals , 1988, IEEE Transactions on Biomedical Engineering.

[195]  W. Schuhmann,et al.  Robotic sequential analysis of a library of metalloporphyrins as electrocatalysts for voltammetric nitric oxide sensors. , 2005, The Analyst.

[196]  A. Kucernak,et al.  Fabrication of carbon microelectrodes with an effective radius of 1 nm , 2002 .

[197]  T. Matsue,et al.  Microamperometric measurements of photosynthetic activity in a single algal protoplast. , 1999, Biophysical journal.

[198]  S. Rotenberg,et al.  Scanning electrochemical microscopy of living cells. 5. Imaging of fields of normal and metastatic human breast cells. , 2003, Analytical chemistry.

[199]  Jonathan A. Stamford,et al.  Fast cyclic voltammetry: Measuring transmitter release in ‘real time’ , 1990, Journal of Neuroscience Methods.

[200]  A. L. Cahill,et al.  Stable gene silencing of synaptotagmin I in rat PC12 cells inhibits Ca2+-evoked release of catecholamine. , 2006, American journal of physiology. Cell physiology.

[201]  E. Chapman,et al.  Role of synaptotagmin in Ca2+-triggered exocytosis. , 2002, The Biochemical journal.

[202]  M. Rice,et al.  Chronoamperometry in brain slices: Quantitative evaluations of in vivo electrochemistry , 1983, Brain Research.

[203]  J. Castracane,et al.  Amperometric detection of quantal catecholamine secretion from individual cells on micromachined silicon chips. , 2003, Analytical chemistry.

[204]  Wei Zhan,et al.  Chemically imaging living cells by scanning electrochemical microscopy. , 2006, Biosensors & bioelectronics.

[205]  L. Berdondini,et al.  Cell-compatible array of three-dimensional tip electrodes for the detection of nitric oxide release. , 2005, Biosensors & bioelectronics.

[206]  G. Wittstock Modification and characterization of artificially patterned enzymatically active surfaces by scanning electrochemical microscopy , 2001, Fresenius' journal of analytical chemistry.

[207]  E. Yeung Following single cell dynamics with native fluorescence microscopy. , 1999, Analytical chemistry.

[208]  R. Heidelberger Electrophysiological approaches to the study of neuronal exocytosis and synaptic vesicle dynamics. , 2001, Reviews of physiology, biochemistry and pharmacology.

[209]  R. B. Jackson,et al.  Photosynthetic Electron Transport in Single Guard Cells as Measured by Scanning Electrochemical Microscopy , 1997, Plant physiology.

[210]  Andrew G Ewing,et al.  Quantitative chemical analysis of single cells. , 2009, Methods in molecular biology.

[211]  L. Imeri,et al.  Miniaturized optoelectronic system for telemetry of in vivo voltammetric signals , 1990, Journal of Neuroscience Methods.

[212]  R. Wightman,et al.  Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. , 2003, Clinical chemistry.

[213]  L. Tauc,et al.  Micro carbon electrode for intracellular voltammetry , 1986 .

[214]  Robert H. Chow,et al.  Pancreatic β-Cells Secrete Insulin in Fast- and Slow-Release Forms , 2006 .

[215]  Yong Chen,et al.  Coupling of electrochemistry and fluorescence microscopy at indium tin oxide microelectrodes for the analysis of single exocytotic events. , 2006, Angewandte Chemie.

[216]  M. B. Rooney,et al.  Extracellular dopamine dynamics in rat caudate–putamen during experimenter-delivered and intracranial self-stimulation , 2000, Neuroscience.

[217]  P. Lledo Exocytosis in excitable cells: a conserved molecular machinery from yeast to neuron. , 1997, European journal of endocrinology.

[218]  L. Blatter,et al.  Simultaneous measurements of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells. , 1995, Circulation research.

[219]  J. B. Sørensen SNARE complexes prepare for membrane fusion , 2005, Trends in Neurosciences.

[220]  Robert J. Forster,et al.  Microelectrodes: new dimensions in electrochemistry , 1994 .

[221]  Zhuan Zhou,et al.  “Kiss-and-Run” Glutamate Secretion in Cultured and Freshly Isolated Rat Hippocampal Astrocytes , 2005, The Journal of Neuroscience.

[222]  J. Stamford In vivo voltammetry: Promise and perspective , 1985, Brain Research Reviews.

[223]  Andrew G. Ewing,et al.  Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer , 1992 .

[224]  T. Matsue,et al.  Characterization of local respiratory activity of PC12 neuronal cell by scanning electrochemical microscopy , 2003 .

[225]  M. Jackson,et al.  Fusion pores and fusion machines in Ca2+-triggered exocytosis. , 2006, Annual review of biophysics and biomolecular structure.

[226]  R. Wightman,et al.  Fast-scan cyclic voltammetry of 5-hydroxytryptamine. , 1995, Analytical chemistry.

[227]  Gunther Wittstock,et al.  Elektrochemische Rastermikroskopie zur direkten Abbildung von Reaktionsgeschwindigkeiten , 2007 .

[228]  M. Mousa Electron emission from carbon fibre tips , 1996 .

[229]  J. Oni,et al.  Electrochemical nitric oxide sensor preparation: a comparison of two electrochemical methods of electrode surface modification. , 2005, Bioelectrochemistry.

[230]  D. Sulzer,et al.  Dopamine neurons release transmitter via a flickering fusion pore , 2004, Nature Neuroscience.

[231]  R. S. Kelly,et al.  Bevelled carbon-fiber ultramicroelectrodes , 1986 .

[232]  A. Marty,et al.  Extrasynaptic Vesicular Transmitter Release from the Somata of Substantia Nigra Neurons in Rat Midbrain Slices , 1998, The Journal of Neuroscience.