The "game" of glial fibrillary acidic and S100 proteins in pituitary adenomas: two players or several?

INTRODUCTION S100 protein and GFAP expression in pituitary adenomas tumour cells is not well known; few correlations with other prognostic or therapeutic factors have previously been reported in pituitary adenomas. We aim to elucidate their involvement in the pathogenesis of pituitary adenomas and to establish the correlation of their expression with different growth factors and growth factor receptors known to have a prognostic and/or therapeutic role. MATERIAL AND METHODS Sixty-one cases of pituitary adenomas were immunohistochemically assessed for the expression of GFAP and S100 protein in both tumour cells and FS cells, in close relationship with hormone profile, and correlated with vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) expression, previously studied by our team. RESULTS GFAP and S100 protein were expressed both in tumour cells and FS cells. Differences between morphology, distribution, and density of GFAP+ FS cells and S100+ FS cells were observed according to the hormone profile of pituitary adenomas. GFAP and S100 protein expression in tumour cells was significantly related to hormone profile of pituitary adenomas and also with VEGF and EGFR expression. CONCLUSIONS GFAP and S100 protein expressions in tumour cells from pituitary adenomas are influenced by hormone profile. Our re-sults support the presence of two molecular subtypes of FS cells GFAP+/VEGF+/S100 respectively and another one that is GFAP-/S100+/EGFR+ simultaneously with the classical variant GFAP+/S100+. It is possible that S100+/EGFR+ pituitary adenomas represent a group of pituitary adenomas with an aggressive behaviour and a high ability of invasion and recurrence.

[1]  S. Powell,et al.  Epithelial and organ‐related marker expression in pituitary adenomas , 2016, Neuropathology : official journal of the Japanese Society of Neuropathology.

[2]  T. Tateno,et al.  NG2 targets tumorigenic Rb inactivation in Pit1-lineage pituitary cells. , 2016, Endocrine-related cancer.

[3]  Wu Jl,et al.  Significance of TNF-α and IL-6 expression in invasive pituitary adenomas. , 2016 .

[4]  S. Yamada,et al.  TTF-1-positive oncocytic sellar tumor with follicle formation/ependymal differentiation: non-adenomatous tumor capable of two different interpretations as a pituicytoma or a spindle cell oncocytoma , 2015, Brain Tumor Pathology.

[5]  V. Stefanović,et al.  Folliculo-stellate cells - potential mediators of the inflammaging-induced hyperactivity of the hypothalamic-pituitary-adrenal axis in healthy elderly individuals. , 2014, Medical hypotheses.

[6]  Peter Möller,et al.  A diagnostic algorithm to distinguish desmoplastic from spindle cell melanoma , 2014, Modern Pathology.

[7]  D. Herbert,et al.  The changes of gap junctions between pituitary folliculo‐stellate cells during the postnatal development of zucker fatty and lean rats , 2014, Microscopy research and technique.

[8]  Hailong Xie,et al.  EGFRvIII Mediates Hepatocellular Carcinoma Cell Invasion by Promoting S100 Calcium Binding Protein A11 Expression , 2013, PloS one.

[9]  Jonathan M. Morris,et al.  Pituicytoma with Gelsolin Amyloid Deposition , 2013, Endocrine Pathology.

[10]  Forest M White,et al.  Molecular Characterization of EGFR and EGFRvIII Signaling Networks in Human Glioblastoma Tumor Xenografts* , 2012, Molecular & Cellular Proteomics.

[11]  E. Aronica,et al.  GFAP-Cre-Mediated Transgenic Activation of Bmi1 Results in Pituitary Tumors , 2012, PloS one.

[12]  A. Waisman,et al.  The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration. , 2012, Endocrinology.

[13]  Robert E. Brown,et al.  Neuron precursor features of spindle cell oncocytoma of adenohypophysis. , 2012, Annals of clinical and laboratory science.

[14]  Y. Suh,et al.  Pituicytoma with unusual histological features , 2011, Pathology international.

[15]  I. Vajtai,et al.  Spindle cell oncocytoma of the pituitary gland with follicle-like component: organotypic differentiation to support its origin from folliculo-stellate cells , 2011, Acta Neuropathologica.

[16]  J. Chen,et al.  Pituicytoma: case report and review of the literature. , 2010, Neurology India.

[17]  B. Feuerstein,et al.  Pituicytoma: characterization of a unique neoplasm by histology, immunohistochemistry, ultrastructure, and array-based comparative genomic hybridization. , 2010, Archives of pathology & laboratory medicine.

[18]  I. Blümcke,et al.  A tumor-specific cellular environment at the brain invasion border of adamantinomatous craniopharyngiomas , 2010, Virchows Archiv.

[19]  B. Scheithauer,et al.  Spindle cell oncocytoma of the adenohypophysis: report of a case with marked cellular atypia and recurrence despite adjuvant treatment. , 2009, Clinical neuropathology.

[20]  K. Inoue,et al.  An Insight to Pituitary Folliculo‐Stellate Cells , 2008, Journal of neuroendocrinology.

[21]  Seung-Ki Kim,et al.  Pituitary adenoma with rich folliculo‐stellate cells and mucin‐producing epithelia arising in a 2‐year‐old girl , 2007, Pathology international.

[22]  K. Kovacs,et al.  Folliculo-stellate Cells of the Human Pituitary: A Type of Adult Stem Cell? , 2002, Ultrastructural pathology.

[23]  S. Ogawa,et al.  The structure and function of folliculo-stellate cells in the anterior pituitary gland. , 1999, Archives of histology and cytology.

[24]  D. Gospodarowicz,et al.  Pituitary follicular cells secrete both vascular endothelial growth factor and follistatin. , 1989, Biochemical and biophysical research communications.

[25]  J. Boya,et al.  Immunohistochemical localization of intermediate filament and S-100 proteins in several non-endocrine cells of the human pituitary gland. , 1989, Archives of histology and cytology.

[26]  W. D. de Herder Molecular Imaging of Pituitary Pathology. , 2016, Frontiers of hormone research.

[27]  S. Kuznetsov,et al.  [Age-related changes of the pituitary folliculo-stellate cells in rats in chronic stress]. , 2013, Vestnik Rossiiskoi akademii meditsinskikh nauk.

[28]  S. Vinores Demonstration of glial fibrillary acidic (GFA) protein by electron immunocytochemistry in the granular cells of a choristoma of the neurohypophysis , 2004, Histochemistry.

[29]  B. Giometto,et al.  Folliculo-stellate cells of human pituitary adenomas: immunohistochemical study of the monocyte/macrophage phenotype expression. , 1997, Neuroendocrinology.

[30]  F. Gudat,et al.  Immunohistochemical studies on human pituitary gland and adenomas. , 1991, Journal fur Hirnforschung.