Optimal Codes for Strong Identification

Fault diagnosis of multiprocessor systems gives the motivation for identifying codes. In this paper we provide an infinite sequence of optimal strongly (1, ?l)-identifying codes in Hamming spaces for every l when l? 3.

[1]  Gérard D. Cohen,et al.  Linear Codes with Covering Radius and Codimension , 2001 .

[2]  Iiro S. Honkala,et al.  On strongly identifying codes , 2002, Discret. Math..

[3]  Simon Litsyn,et al.  Bounds on identifying codes , 2001, Discret. Math..

[4]  Iiro S. Honkala,et al.  Codes for Strong Identification , 2001, Electron. Notes Discret. Math..

[5]  S. Litsyn,et al.  On binary codes for identification , 2000 .

[6]  Tero Laihonen,et al.  Sequences of optimal identifying codes , 2002, IEEE Trans. Inf. Theory.

[7]  Iiro S. Honkala,et al.  Two families of optimal identifying codes in binary Hamming spaces , 2002, IEEE Trans. Inf. Theory.

[8]  Tero Laihonen,et al.  Families of optimal codes for strong identification , 2002, Discret. Appl. Math..

[9]  Mark G. Karpovsky,et al.  On a New Class of Codes for Identifying Vertices in Graphs , 1998, IEEE Trans. Inf. Theory.

[10]  Iiro S. Honkala,et al.  On Codes Identifying Sets of Vertices in Hamming Spaces , 2000, Des. Codes Cryptogr..

[11]  Iiro S. Honkala,et al.  General Bounds for Identifying Codes in Some Infinite Regular Graphs , 2001, Electron. J. Comb..