On the validation, stability and control of certain biological systems

This thesis is concerned with the long-term behavior of certain mathematical models describing predator-prey interactions, virus propagation in vivo and integrated pest management strategies. Of interest are the stability and impulsive controllability of such models, since the corresponding mathematical findings are then easily interpretable in terms of biological concepts with major relevance such as disease endemicity, species extinction or permanence and pest eradication. Threshold conditions for the global stability of the equilibria are obtained by means of Lyapunov’s direct method combined with LaSalle invariance principle. These results, stated in terms of a biologically significant key parameter called the basic reproduction number, are then reconfirmed by using monotonicity methods. The models of concern are formulated in a general way, no specialization being made, for instance, on the incidence rate of the infection and on the removal rate of the virus (for the virus model) or on the functional response of the predator (for the predator-prey model). This makes the findings are applicable to a large class of real-life interactions. Also, threshold conditions with immediate biological significance which guarantee the global success of integrated pest management strategies are derived using Floquet theory. The corresponding impulsive controllability results are then obtained by using comparison arguments. Also, a bifurcation analysis is performed via an operator theoretic approach and some situations leading to a chaotic behavior of the solutions are investigated by means of numerical simulations.

[1]  Hal L. Smith,et al.  Stable Periodic Orbits for a Class of Three Dimensional Competitive Systems , 1994 .

[2]  A. Perelson,et al.  HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time , 1996, Science.

[3]  V. Capasso Mathematical Structures of Epidemic Systems , 1993, Lecture Notes in Biomathematics.

[4]  GLOBAL STABILITY FOR A STAGE-STRUCTURED PREDATOR-PREY MODEL , 2006 .

[5]  Paul Georgescu,et al.  Impulsive perturbations of a three-trophic prey-dependent food chain system , 2008, Math. Comput. Model..

[6]  Y. Kuang,et al.  Global analyses in some delayed ratio-dependent predator-prey systems , 1998 .

[7]  S. Ellner,et al.  Testing for predator dependence in predator-prey dynamics: a non-parametric approach , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[8]  J. Heesterbeek,et al.  The saturating contact rate in marriage- and epidemic models , 1993, Journal of mathematical biology.

[9]  Yang Kuang,et al.  Global stability of Gause-type predator-prey systems , 1990 .

[10]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .

[11]  John C. Gower,et al.  The properties of a stochastic model for two competing species , 1958 .

[12]  J. Panetta,et al.  A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competitive environment. , 1996, Bulletin of mathematical biology.

[13]  Lansun Chen,et al.  Bifurcation of nontrivial periodic solutions for an impulsively controlled pest management model , 2008, Appl. Math. Comput..

[14]  M. Rosenzweig,et al.  Exploitation in Three Trophic Levels , 1973, The American Naturalist.

[15]  Lansun Chen,et al.  A Holling II functional response food chain model with impulsive perturbations , 2005 .

[16]  Robert F. Luck,et al.  Evaluation of natural enemies for biological control: A behavioral approach , 1990 .

[17]  A. Margheri,et al.  Some examples of persistence in epidemiological models , 2003, Journal of mathematical biology.

[18]  H. Antosiewicz,et al.  Differential Equations: Stability, Oscillations, Time Lags , 1967 .

[19]  Hal L. Smith,et al.  Virus Dynamics: A Global Analysis , 2003, SIAM J. Appl. Math..

[20]  Leon G. Higley,et al.  The Economic Injury Level Concept and Environmental Quality: A New Perspective , 1992 .

[21]  Lansun Chen,et al.  The study of predator–prey system with defensive ability of prey and impulsive perturbations on the predator , 2005 .

[22]  Chris Cosner,et al.  Book Review: Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems , 1996 .

[23]  Lansun Chen,et al.  The dynamics of a prey-dependent consumption model concerning impulsive control strategy , 2005, Appl. Math. Comput..

[24]  L. Ginzburg,et al.  The nature of predation: prey dependent, ratio dependent or neither? , 2000, Trends in ecology & evolution.

[25]  M. Li,et al.  Global dynamics of a SEIR model with varying total population size. , 1999, Mathematical Biosciences.

[26]  G. Harrison,et al.  Comparing Predator‐Prey Models to Luckinbill's Experiment with Didinium and Paramecium , 1995 .

[27]  Wendi Wang,et al.  Permanence and Stability of a Stage-Structured Predator–Prey Model , 2001 .

[28]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  Y. Kuang,et al.  RICH DYNAMICS OF GAUSE-TYPE RATIO-DEPENDENT PREDATOR-PREY SYSTEM , 1999 .

[30]  S Rinaldi,et al.  Remarks on food chain dynamics. , 1996, Mathematical biosciences.

[31]  Philip K Maini,et al.  A lyapunov function and global properties for sir and seir epidemiological models with nonlinear incidence. , 2004, Mathematical biosciences and engineering : MBE.

[32]  Wendi Wang,et al.  A predator-prey system with stage-structure for predator , 1997 .

[33]  Philip H. Crowley,et al.  Functional Responses and Interference within and between Year Classes of a Dragonfly Population , 1989, Journal of the North American Benthological Society.

[34]  Shengqiang Liu,et al.  A Stage-structured Predator-prey Model of Beddington-DeAngelis Type , 2006, SIAM J. Appl. Math..

[35]  Jordi Bascompte,et al.  Interaction strength combinations and the overfishing of a marine food web. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  W. Gurney,et al.  “Stage-Structure” Models of Uniform Larval Competition , 1984 .

[37]  Kevin S. McCann,et al.  Bifurcation Structure of a Three-Species Food-Chain Model , 1995 .

[38]  Tzy-Wei Hwang,et al.  Global analysis of the predator–prey system with Beddington–DeAngelis functional response , 2003 .

[39]  Xuebin Chi,et al.  Impulsive control strategies in biological control of pesticide. , 2003, Theoretical population biology.

[40]  William Gurney,et al.  Stage Structure Models Applied in Evolutionary Ecology , 1989 .

[41]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[42]  Rong Yuan,et al.  Stability and bifurcation in a delayed predator–prey system with Beddington–DeAngelis functional response , 2004 .

[43]  Jianjun Jiao,et al.  PULSE FISHING POLICY FOR A STAGE-STRUCTURED MODEL WITH STATE-DEPENDENT HARVESTING , 2007 .

[44]  B. Deng,et al.  Biological control does not imply paradox. , 2007, Mathematical biosciences.

[45]  S. Levin,et al.  Dynamical behavior of epidemiological models with nonlinear incidence rates , 1987, Journal of mathematical biology.

[46]  A. Korobeinikov Global properties of basic virus dynamics models , 2004, Bulletin of mathematical biology.

[47]  E. C. Pielou An introduction to mathematical ecology , 1970 .

[48]  Shigui Ruan,et al.  Dynamical behavior of an epidemic model with a nonlinear incidence rate , 2003 .

[49]  Ying-Hen Hsieh,et al.  SARS Epidemiology Modeling , 2004, Emerging infectious diseases.

[50]  Fengyan Wang,et al.  A food chain model with impulsive perturbations and Holling IV functional response , 2005 .

[51]  J. Beddington,et al.  Mutual Interference Between Parasites or Predators and its Effect on Searching Efficiency , 1975 .

[52]  R. Gaines,et al.  Coincidence Degree and Nonlinear Differential Equations , 1977 .

[53]  Paul Georgescu,et al.  IMPULSIVE CONTROL STRATEGIES FOR PEST MANAGEMENT , 2007 .

[54]  R. Ruth,et al.  Stability of dynamical systems , 1988 .

[55]  B. Deng,et al.  Biological Control Does Not Imply Paradox — A Case Against Ratio-Dependent Models , 2003 .

[56]  J. H. Frank Natural Enemies of Vegetable Insect Pests , 1993 .

[57]  Y. Iwasa,et al.  Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models , 1986, Journal of mathematical biology.

[58]  Xuebin Chi,et al.  The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission , 2002 .

[59]  Alan S. Perelson,et al.  Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..

[60]  Leon G. Higley,et al.  Economic Injury Levels in Theory and Practice , 1986 .

[61]  M A Nowak,et al.  Virus dynamics and drug therapy. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Ray F. Smith,et al.  The integrated control concept , 1959 .

[63]  K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .

[64]  Abdelkader Lakmeche,et al.  Nonlinear mathematical model of pulsed-therapy of heterogeneous tumors , 2001 .

[65]  Sze-Bi Hsu,et al.  A ratio-dependent food chain model and its applications to biological control. , 2003, Mathematical biosciences.

[66]  Shigui Ruan,et al.  Global analysis of an epidemic model with nonmonotone incidence rate , 2006, Mathematical Biosciences.

[67]  Philip K Maini,et al.  Non-linear incidence and stability of infectious disease models. , 2005, Mathematical medicine and biology : a journal of the IMA.

[68]  G. Serio,et al.  A generalization of the Kermack-McKendrick deterministic epidemic model☆ , 1978 .

[69]  Peter A. Abrams,et al.  The Fallacies of "Ratio‐Dependent" Predation , 1994 .

[70]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[71]  Ying-Hen Hsieh,et al.  GLOBAL DYNAMICS OF A PREDATOR-PREY MODEL WITH STAGE STRUCTURE FOR THE PREDATOR∗ , 2007 .

[72]  N. H. Pavel,et al.  Differential equations, flow invariance and applications , 1984 .

[73]  Paul Waltman,et al.  A classification theorem for three dimensional competitive systems , 1987 .

[74]  E. C. Pielou,et al.  An introduction to mathematical ecology , 1970 .

[75]  YanNiXIAO,et al.  Global Stability of a Predator-Prey System with Stage Structure for the Predator , 2004 .

[76]  R. Arditi,et al.  Nonlinear Food Web Models and Their Responses to Increased Basal Productivity , 1996 .

[77]  Lansun Chen,et al.  The stage-structured predator-prey model and optimal harvesting policy. , 2000, Mathematical biosciences.

[78]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[79]  Michael E. Gilpin,et al.  Spiral Chaos in a Predator-Prey Model , 1979, The American Naturalist.

[80]  A. Hastings,et al.  Weak trophic interactions and the balance of nature , 1998, Nature.

[81]  Yang Kuang,et al.  Basic Properties of Mathematical Population Models , 2002 .

[82]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[83]  B. Goh Global Stability in Many-Species Systems , 1977, The American Naturalist.

[84]  G. Iooss Bifurcation of maps and applications , 1979 .

[85]  V. S. Ivlev,et al.  Experimental ecology of the feeding of fishes , 1962 .

[86]  Yang Kuang,et al.  Global qualitative analysis of a ratio-dependent predator–prey system , 1998 .

[87]  J. F. Gilliam,et al.  FUNCTIONAL RESPONSES WITH PREDATOR INTERFERENCE: VIABLE ALTERNATIVES TO THE HOLLING TYPE II MODEL , 2001 .

[88]  G. Harrison,et al.  Global stability of predator-prey interactions , 1979 .

[89]  P. Verhulst,et al.  Notice sur la loi que la population suit dans son accroissement. Correspondance Mathematique et Physique Publiee par A , 1838 .

[90]  Yang Kuang,et al.  Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response , 2004 .

[91]  Alan Hastings,et al.  Chaos in three species food chains , 1994 .

[92]  L. Luckinbill,et al.  Coexistence in Laboratory Populations of Paramecium Aurelia and Its Predator Didinium Nasutum , 1973 .

[93]  Kevin S. McCann,et al.  Biological Conditions for Chaos in a Three‐Species Food Chain , 1994 .

[94]  M. Hassell,et al.  New Inductive Population Model for Insect Parasites and its Bearing on Biological Control , 1969, Nature.

[95]  C. S. Holling,et al.  The functional response of predators to prey density and its role in mimicry and population regulation. , 1965 .

[96]  Wendi Wang,et al.  Epidemic models with nonlinear infection forces. , 2005, Mathematical biosciences and engineering : MBE.

[97]  Guilie Luo,et al.  Asymptotic behaviors of competitive Lotka–Volterra system with stage structure , 2002 .

[98]  H. Hethcote,et al.  Some epidemiological models with nonlinear incidence , 1991, Journal of mathematical biology.

[99]  A. Perelson Modelling viral and immune system dynamics , 2002, Nature Reviews Immunology.

[100]  Josef Hofbauer,et al.  Uniform persistence and repellors for maps , 1989 .

[101]  J. Schmidt,et al.  Dynamics of hepatitis B virus infection in vivo. , 1997, Journal of hepatology.

[102]  Paul Georgescu,et al.  Pest regulation by means of impulsive controls , 2007, Appl. Math. Comput..

[103]  BingLiu,et al.  The Dynamics of a Predator-prey Model with Ivlev's Functional Response Concerning Integrated Pest Management , 2004 .

[104]  V. Lakshmikantham,et al.  Theory of Impulsive Differential Equations , 1989, Series in Modern Applied Mathematics.

[105]  Xinyu Song,et al.  The prey-dependent consumption two-prey one-predator models with stage structure for the predator and impulsive effects. , 2006, Journal of theoretical biology.

[106]  Lansun Chen,et al.  Chaos in three species food chain system with impulsive perturbations , 2005 .

[107]  Liancheng Wang,et al.  Global Dynamics of an SEIR Epidemic Model with Vertical Transmission , 2001, SIAM J. Appl. Math..

[108]  H. I. Freedman,et al.  A time-delay model of single-species growth with stage structure. , 1990, Mathematical biosciences.

[109]  C. S. Holling The components of prédation as revealed by a study of small-mammal prédation of the European pine sawfly. , 1959 .

[110]  Michael Y. Li,et al.  Global stability for the SEIR model in epidemiology. , 1995, Mathematical biosciences.

[111]  R. J. de Boer,et al.  A Formal Derivation of the “Beddington” Functional Response , 1997 .

[112]  P. Yodzis,et al.  Predator-Prey Theory and Management of Multispecies Fisheries , 1994 .

[113]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[114]  Fengde Chen Periodicity in a ratio-dependent predator-prey system with stage structure for predator , 2005 .

[115]  R. Agarwal,et al.  Recent progress on stage-structured population dynamics , 2002 .

[116]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[117]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .

[118]  H. Hethcote A Thousand and One Epidemic Models , 1994 .

[119]  Andrei Korobeinikov,et al.  Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-Linear Transmission , 2006, Bulletin of mathematical biology.

[120]  Tzy-Wei Hwang,et al.  Uniqueness of limit cycles of the predator–prey system with Beddington–DeAngelis functional response , 2004 .

[121]  N. Apreutesei,et al.  Necessary Optimality Conditions for a Lotka-Volterra Three Species System , 2006 .

[122]  James S. Muldowney,et al.  Compound matrices and ordinary differential equations , 1990 .

[123]  Ying-Hen Hsieh,et al.  Global Stability for a Virus Dynamics Model with Nonlinear Incidence of Infection and Removal , 2006, SIAM J. Appl. Math..

[124]  Dejun Tan,et al.  Dynamic complexities of a food chain model with impulsive perturbations and Beddington–DeAngelis functional response , 2006 .

[125]  Christian Jost,et al.  About deterministic extinction in ratio-dependent predator-prey models , 1999 .

[126]  Paul Waltman,et al.  Uniformly persistent systems , 1986 .

[127]  William Gurney,et al.  The systematic formulation of models of stage-structured populations , 1986 .

[128]  F. J. Richards A Flexible Growth Function for Empirical Use , 1959 .

[129]  Lansun Chen,et al.  A NEW MATHEMATICAL MODEL FOR OPTIMAL CONTROL STRATEGIES OF INTEGRATED PEST MANAGEMENT , 2007 .

[130]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[131]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[132]  Lansun Chen,et al.  A study of predator–prey models with the Beddington–DeAnglis functional response and impulsive effect , 2006 .

[133]  L. Slobodkin,et al.  Community Structure, Population Control, and Competition , 1960, The American Naturalist.

[134]  P. H. Leslie SOME FURTHER NOTES ON THE USE OF MATRICES IN POPULATION MATHEMATICS , 1948 .

[135]  Simon Wain-Hobson Virus Dynamics: Mathematical Principles of Immunology and Virology , 2001, Nature Medicine.