Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system.

Using the multiexciton density matrix theory of excitation energy transfer in chromophore complexes developed in a foregoing paper [J. Chem. Phys. 118, 746 (2003)], the computation of ultrafast transient absorption spectra is presented. Beside static disorder and standard mechanisms of excitation energy dissipation the theory incorporates exciton exciton annihilation (EEA) processes. To elucidate signatures of EEA in intensity dependent transient absorption data the approach is applied to the B850 ring of the LH2 found in rhodobacter sphaeroides. As main indications for two-exciton population and resulting EEA we found (i) a weakening of the dominant single-exciton bleaching structure in the transient absorption, and (ii) an intermediate suppression of long-wavelength and short-wavelength shoulders around the bleaching structure. The suppression is caused by stimulated emission from the two-exciton to the one-exciton state and the return of the shoulders follows from a depletion of two-exciton population according to EEA. The EEA-signature survives as a short-wavelength shoulder in the transient absorption if orientational and energetic disorder are taken into account. Therefore, the observation of the EEA-signatures should be possible when doing frequency resolved transient absorption experiments with a sufficiently strongly varying pump-pulse intensity.

[1]  Volkhard May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems: A Theoretical Introduction , 2000 .

[2]  J. Wrachtrup,et al.  Spectroscopy on Single Light-Harvesting Complexes at Low Temperature , 1999 .

[3]  V. Sundström,et al.  Exciton delocalization probed by excitation annihilation in the light-harvesting antenna LH2. , 2001, Physical review letters.

[4]  R. Gadonas,et al.  Annihilation of singlet excitons in J aggregates of pseudoisocyanine (PIC) studied by pico‐ and subpicosecond spectroscopy , 1988 .

[5]  H. Stiel,et al.  J-aggregates of pseudoisocyanine in solution: New data from nonlinear spectroscopy , 1988 .

[6]  I. Gould,et al.  Ab Initio Molecular Orbital Calculations of Electronic Couplings in the LH2 Bacterial Light-Harvesting Complex of Rps. Acidophila , 1999 .

[7]  V. May,et al.  Exciton exciton annihilation dynamics in chromophore complexes. I. Multiexciton density matrix formulation , 2003 .

[8]  G. Stock,et al.  NONPERTURBATIVE APPROACH TO FEMTOSECOND SPECTROSCOPY : GENERAL THEORY AND APPLICATION TO MULTIDIMENSIONAL NONADIABATIC PHOTOISOMERIZATION PROCESSES , 1995 .

[9]  V. Sundström,et al.  Pump–probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach , 1997 .

[10]  V. Sundström,et al.  Energy migration in the light-harvesting antenna of the photosynthetic bacterium Rhodospirillum rubrum studied by time-resolved excitation annihilation at 77 K. , 1996, Biophysical journal.

[11]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[12]  Leonas Valkunas,et al.  NONLINEAR ANNIHILATION OF EXCITONS.: THEORY , 2000 .

[13]  V. Sundström,et al.  Exciton-Wave Packet Dynamics in Molecular Aggregates Studied with Pump−Probe Spectroscopy† , 2000 .

[14]  R. G. Alden,et al.  Calculations of Spectroscopic Properties of the LH2 Bacteriochlorophyll−Protein Antenna Complex from Rhodopseudomonas acidophila† , 1997 .

[15]  Sheng Hsien Lin,et al.  Density Matrix Method and Femtosecond Processes , 1991 .

[16]  Su Lin,et al.  Subpicosecond Pump−Supercontinuum Probe Spectroscopy of LH2 Photosynthetic Antenna Proteins at Low Temperature , 1998 .

[17]  W. W. Parson,et al.  Properties of the excited singlet states of bacteriochlorophyll a and bacteriopheophytin a in polar solvents , 1991 .

[18]  Tomas Gillbro,et al.  Energy Transfer and Exciton Annihilation in the B800−850 Antenna Complex of the Photosynthetic Purple Bacterium Rhodopseudomonas acidophila (Strain 10050). A Femtosecond Transient Absorption Study , 1997 .

[19]  S. Mukamel,et al.  Multiple Exciton Coherence Sizes in Photosynthetic Antenna Complexes viewed by Pump−Probe Spectroscopy , 1997 .

[20]  K. Schulten,et al.  Electronic Excitations in Aggregates of Bacteriochlorophylls , 1998 .

[21]  F. Spano,et al.  Theory of coherent transient spectroscopy in molecular aggregates: The effects of interacting excitons , 1995 .

[22]  V. Sundström,et al.  Exciton Relaxation and Polaron Formation in LH2 at Low Temperature , 2000 .

[23]  V. Sundström,et al.  Microscopic Theory of Exciton Annihilation: Application to the LH2 Antenna System , 2001 .

[24]  M. A. Bopp,et al.  The dynamics of structural deformations of immobilized single light-harvesting complexes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. V. van Oijen,et al.  Spectroscopy of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila: diagonal disorder, intercomplex heterogeneity, spectral diffusion, and energy transfer in the B800 band. , 2000, Biophysical journal.

[26]  A. V. van Oijen,et al.  Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. II. Exciton states of an elliptically deformed ring aggregate. , 2001, Biophysical journal.

[27]  Klaus Schulten,et al.  Pigment Organization and Transfer of Electronic Excitation in the Photosynthetic Unit of Purple Bacteria , 1997 .

[28]  A. Oijen,et al.  Unraveling the electronic structure of individual photosynthetic pigment-protein complexes , 1999, Science.

[29]  V. May,et al.  Quantum master equation, Lindblad-type of dissipation and temperature dependent Monte Carlo wave-function propagation , 2000 .

[30]  J. Knoester,et al.  Pump-Probe Spectroscopy and the Exciton Delocalization Length in Molecular Aggregates , 1999 .

[31]  G. Stock,et al.  Femtosecond pump-probe spectroscopy of electron-transfer systems: a nonperturbative approach , 1997 .

[32]  Graham R. Fleming,et al.  Electronic Excitation Transfer from Carotenoid to Bacteriochlorophyll in the Purple Bacterium Rhodopseudomonas acidophila , 1998 .

[33]  E. Katilius,et al.  Singlet-singlet annihilation and local heating in FMO complexes , 1996 .

[34]  G. Fleming,et al.  Excitation Transfer in the Core Light-Harvesting Complex (LH-1) of Rhodobacter sphaeroides: An Ultrafast Fluorescence Depolarization and Annihilation Study , 1995 .

[35]  V. Sundström,et al.  Fluorescence depolarization dynamics in the B850 complex of purple bacteria , 2002 .

[36]  Tõnu Pullerits,et al.  Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit , 1999 .

[37]  Thomas Renger,et al.  Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes , 2001 .

[38]  A. Freiberg,et al.  Exciton Self Trapping in One-Dimensional Photosynthetic Antennas , 2001 .

[39]  R. Grondelle,et al.  Exciton−Vibrational Relaxation and Transient Absorption Dynamics in LH1 of Rhodopseudomonas viridis: A Redfield Theory Approach , 2002 .