A nonconforming finite element method for fluid–structure interaction problems

In this paper, we develop a nonconforming finite element methodology using a three-field formulation to analyze a fluid–structure interaction problem. The methodology is used to couple a Lagrangian model describing the structure with the arbitrary Lagrangian–Eulerian strategy used to describe the fluid in order to simulate a full unsteady physical phenomenon. Consistency error estimates are obtained which show that the numerical scheme employed yields a first order approximation for the solution to the fluid–structure interaction problem. Finally, we present a discrete energy estimate to demonstrate the stablity of the proposed method. � 2005 Elsevier B.V. All rights reserved.

[1]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[2]  Susan L. Mccleary,et al.  A global/local analysis method for treating details in structural design , 1993 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Padmanabhan Seshaiyer,et al.  hp submeshing via non-conforming finite element methods , 2000 .

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  Faker Ben Belgacem,et al.  Optimal convergence rates of $hp$ mortar finite element methods for second-order elliptic problems , 2000 .

[7]  Yusheng Feng,et al.  Domain Decomposition for Adaptive hp Finite Element Methods , 1994 .

[8]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[9]  M. Wheeler,et al.  Multigrid on the interface for mortar mixed finite element methods for elliptic problems , 2000 .

[10]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[11]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[12]  Trond Kvamsdal,et al.  Parallel Methods for Fluid-Structure Interaction , 1998, PARA.

[13]  Osama A. Kandil,et al.  Unsteady vortex-dominated flows around maneuvering wings over a wide range of Mach numbers , 1988 .

[14]  Roger Ohayon,et al.  Fluid-Structure Interaction: Applied Numerical Methods , 1995 .

[15]  Padmanabhan Seshaiyer,et al.  Uniform hp convergence results for the mortar finite element method , 2000, Math. Comput..

[16]  J. Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes , 1989 .

[17]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[18]  Padmanabhan Seshaiyer,et al.  Stability and convergence of nonconforming hp finite-element methods☆ , 2003 .

[19]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[20]  Yvon Maday,et al.  NUMERICAL ANALYSIS OF SOME DECOUPLING TECHNIQUES FOR THE APPROXIMATION OF THE UNSTEADY FLUID STRUCTURE INTERACTION , 2001 .

[21]  J. Tinsley Oden,et al.  Problem decomposition for adaptive hp finite element methods , 1995 .

[22]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[23]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[24]  Philip Smith,et al.  A non-conforming finite element method for sub-meshing , 2003, Appl. Math. Comput..

[25]  Charbel Farhat,et al.  Transient aeroelastic computations using multiple moving frames of reference , 1990 .