Recommender Systems Research: A Connection-Centric Survey

Recommender systems attempt to reduce information overload and retain customers by selecting a subset of items from a universal set based on user preferences. While research in recommender systems grew out of information retrieval and filtering, the topic has steadily advanced into a legitimate and challenging research area of its own. Recommender systems have traditionally been studied from a content-based filtering vs. collaborative design perspective. Recommendations, however, are not delivered within a vacuum, but rather cast within an informal community of users and social context. Therefore, ultimately all recommender systems make connections among people and thus should be surveyed from such a perspective. This viewpoint is under-emphasized in the recommender systems literature. We therefore take a connection-oriented perspective toward recommender systems research. We posit that recommendation has an inherently social element and is ultimately intended to connect people either directly as a result of explicit user modeling or indirectly through the discovery of relationships implicit in extant data. Thus, recommender systems are characterized by how they model users to bring people together: explicitly or implicitly. Finally, user modeling and the connection-centric viewpoint raise broadening and social issues—such as evaluation, targeting, and privacy and trust—which we also briefly address.

[1]  Thomas G. Dietterich Adaptive computation and machine learning , 1998 .

[2]  Ravi Kumar,et al.  Trawling the Web for Emerging Cyber-Communities , 1999, Comput. Networks.

[3]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[4]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[5]  Batul J. Mirza,et al.  Jumping Connections: A Graph-Theoretic Model for Recommender Systems , 2001 .

[6]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[7]  M. Pazzani,et al.  Webert : Identifying interesting web sites , 2022 .

[8]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[9]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[10]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[11]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[12]  Naren Ramakrishnan,et al.  Privacy Risks in Recommender Systems , 2001, IEEE Internet Comput..

[13]  Mark J. Safferstone Information Rules: A Strategic Guide to the Network Economy , 1999 .

[14]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[15]  Jaideep Srivastava,et al.  Automatic personalization based on Web usage mining , 2000, CACM.

[16]  J M Carlson,et al.  Highly optimized tolerance: a mechanism for power laws in designed systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Patrick Baudisch Joining Collaborative and Content-based Filtering , 2004 .

[18]  Naren Ramakrishnan,et al.  Personalizing interactions with information systems , 2003, Adv. Comput..

[19]  Pattie Maes,et al.  Footprints: history-rich tools for information foraging , 1999, CHI '99.

[20]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[21]  Loren Terveen,et al.  PHOAKS: a system for sharing recommendations , 1997, CACM.

[22]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[23]  Nicholas J. Belkin,et al.  Helping people find what they don't know , 2000, CACM.

[24]  B. Wellman Computer Networks As Social Networks , 2001, Science.

[25]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[26]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[28]  Inderjeet Mani,et al.  Representational Issues in Machine Learning of User Profiles , 1996 .

[29]  Doug Riecken,et al.  Introduction: personalized views of personalization , 2000, CACM.

[30]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[31]  Oren Etzioni,et al.  Adaptive Web sites , 2000, CACM.

[32]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[33]  Ibrahim Cingil,et al.  A broader approach to personalization , 2000, CACM.

[34]  Saverio Perugini Recommender Systems Research , 2005 .

[35]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[36]  Paul Resnick,et al.  Reputation systems , 2000, CACM.

[37]  G. W. Stewart,et al.  The decompositional approach to matrix computation , 2000, Comput. Sci. Eng..

[38]  Geoffrey I. Webb,et al.  # 2001 Kluwer Academic Publishers. Printed in the Netherlands. Machine Learning for User Modeling , 1999 .

[39]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[40]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[41]  Antonietta Grasso,et al.  Augmenting recommender systems by embedding interfaces into practices , 2000, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

[42]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[43]  Hal Berghel Digital Village: Caustic cookies , 2001, CACM.

[44]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[45]  Peter J. Denning,et al.  ACM president's letter: electronic junk , 1982, CACM.

[46]  Savitha Srinivasan,et al.  Is Speech Recognition Becoming Mainstream? , 2002, Computer.

[47]  Gediminas Adomavicius,et al.  Multidimensional Recommender Systems: A Data Warehousing Approach , 2001, WELCOM.

[48]  Edward M. Housman,et al.  State of the Art in Selective Dissemination of Information , 1970, IEEE Transactions on Engineering Writing and Speech.

[49]  Jude W. Shavlik,et al.  Learning users' interests by unobtrusively observing their normal behavior , 2000, IUI '00.

[50]  Andrei Z. Broder Keynote Address - exploring, modeling, and using the web graph , 2003, SIGIR '03.

[51]  Loren G. Terveen,et al.  Does “authority” mean quality? predicting expert quality ratings of Web documents , 2000, SIGIR '00.

[52]  S. Wasserman,et al.  Advances in Social Network Analysis: Research in the Social and Behavioral Sciences , 1994 .

[53]  Kirsten Swearingen,et al.  Beyond Algorithms: An HCI Perspective on Recommender Systems , 2001 .

[54]  C. Lee Giles,et al.  Self-Organization and Identification of Web Communities , 2002, Computer.

[55]  Jon M. Kleinberg,et al.  Mining the Web's Link Structure , 1999, Computer.

[56]  Bart Selman,et al.  Referral Web: combining social networks and collaborative filtering , 1997, CACM.

[57]  James Rucker,et al.  Siteseer: personalized navigation for the Web , 1997, CACM.

[58]  Gordon W. Braudaway,et al.  Populating the Hermitage Museum's new web site , 2001, Commun. ACM.

[59]  Pádraig Cunningham,et al.  An on-line evaluation framework for recommender systems , 2002 .

[60]  Vannevar Bush,et al.  As we may think , 1945, INTR.

[61]  FARIDEH OSAREH,et al.  Bibliometrics, Citation Analysis and Co-Citation Analysis: A Review of Literature I , 1996, Libri.

[62]  Myra Spiliopoulou,et al.  Web usage mining for Web site evaluation , 2000, CACM.

[63]  Susan T. Dumais,et al.  Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..

[64]  Thomas Rist,et al.  From adaptive hypertext to personalized web companions , 2002, CACM.

[65]  Clifford A. Lynch,et al.  Personalization and Recommender Systems in the Larger Context: New Directions and Research Questions (Keynote Speech) , 2001, DELOS.

[66]  Brian Hayes Source GRAPH THEORY IN PRACTICE : PART I , 1999 .

[67]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[68]  Craig G. Nevill-Manning The biological digital library , 2001, CACM.

[69]  Michael F. Schwartz,et al.  Discovering shared interests using graph analysis , 1993, CACM.

[70]  Philip S. Yu,et al.  Horting hatches an egg: a new graph-theoretic approach to collaborative filtering , 1999, KDD '99.

[71]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[72]  Jon M. Kleinberg,et al.  Navigation in a small world , 2000, Nature.

[73]  Peter J. Denning,et al.  Electronic Junk , 1982, Commun. ACM.

[74]  MostafaJ.,et al.  A multilevel approach to intelligent information filtering , 1997 .

[75]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[76]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[77]  Bart Selman,et al.  The Hidden Web , 1997, AI Mag..

[78]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[79]  Ian Soboroff. Charles Nicholas Combining Content and Collaboration in Text Filtering , 1999 .

[80]  John Riedl Guest Editor's Introduction: Personalization and Privacy , 2001, IEEE Internet Comput..

[81]  AgrawalRakesh,et al.  Mining association rules between sets of items in large databases , 1993 .

[82]  Kate Ehrlich,et al.  Pointing the way: active collaborative filtering , 1995, CHI '95.

[83]  Hector Garcia-Molina,et al.  The SIFT information dissemination system , 1999, TODS.

[84]  John Riedl,et al.  Recommender systems in e-commerce , 1999, EC '99.

[85]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[86]  Rashmi R. Sinha,et al.  The role of transparency in recommender systems , 2002, CHI Extended Abstracts.

[87]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[88]  Udi Manber,et al.  Experience with personalization of Yahoo! , 2000, CACM.

[89]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[90]  Loren G. Terveen,et al.  Using frequency-of-mention in public conversations for social filtering , 1996, CSCW '96.

[91]  Susan T. Dumais,et al.  Personalized information delivery: an analysis of information filtering methods , 1992, CACM.

[92]  Mary Beth Rosson,et al.  Developing the Blacksburg electronic village , 1996, CACM.

[93]  B. Bollobás The evolution of random graphs , 1984 .

[94]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[95]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[96]  Naren Ramakrishnan,et al.  Studying Recommendation Algorithms by Graph Analysis , 2003, Journal of Intelligent Information Systems.

[97]  Lada A. Adamic The Small World Web , 1999, ECDL.

[98]  Bruce Krulwich,et al.  Learning user information interests through extraction of semantically significant phrases , 1996 .

[99]  Maurice Mulvenna,et al.  Personalization on the Net using Web Mining , 2000 .

[100]  Maurice D. Mulvenna,et al.  Personalization on the Net using Web mining: introduction , 2000, CACM.

[101]  B. Hayes Graph Theory in Practice: Part II , 2000, American Scientist.

[102]  Ben Shneiderman,et al.  Designing trust into online experiences , 2000, CACM.

[103]  Patrick Baudisch,et al.  Interacting with recommender systems , 1999, CHI EA '99.

[104]  Alfred Kobsa User Modeling and User-Adapted Interaction , 2005, User Modeling and User-Adapted Interaction.

[105]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[106]  Bradley N. Miller,et al.  Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system , 1998, CSCW '98.

[107]  Jon Kleinberg,et al.  The Structure of the Web , 2001, Science.

[108]  Upendra Shardanand Social information filtering for music recommendation , 1994 .

[109]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[110]  Shoshana Loeb,et al.  Information filtering , 1992, CACM.

[111]  Munindar P. Singh,et al.  Community-based service location , 2001, CACM.

[112]  Robin Burke,et al.  Integrating Knowledge-based and Collaborative-filtering Recommender Systems , 2000 .

[113]  Joshua Alspector,et al.  Comparing feature-based and clique-based user models for movie selection , 1998, DL '98.

[114]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[115]  Javed Mostafa,et al.  A multilevel approach to intelligent information filtering: model, system, and evaluation , 1997, TOIS.

[116]  Jon M. Kleinberg,et al.  The Web as a Graph: Measurements, Models, and Methods , 1999, COCOON.

[117]  T DumaisSusan,et al.  Using linear algebra for intelligent information retrieval , 1995 .

[118]  Richard Zeckhauser,et al.  Recommender systems for evaluating computer messages , 1997, CACM.

[119]  Gediminas Adomavicius,et al.  User profiling in personalization applications through rule discovery and validation , 1999, KDD '99.

[120]  Mark Claypool,et al.  Inferring User Interest , 2001, IEEE Internet Comput..

[121]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[122]  Kirsten Swearingen,et al.  Interaction Design for Recommender Systems , 2002 .

[123]  Rashmi R. Sinha,et al.  Comparing Recommendations Made by Online Systems and Friends , 2001, DELOS.

[124]  Stanley Boykin,et al.  Machine learning of event segmentation for news on demand , 2000, CACM.

[125]  John Zimmerman,et al.  Exposing profiles to build trust in a recommender , 2002, CHI Extended Abstracts.

[126]  Jakob Nielsen,et al.  Information Appliances and Beyond , 2000 .