The Infinitely-Many-Sites Model as a Measure-Valued Diffusion

On se propose de donner un fondement mathematique rigoureux pour une approximation diffusion du modele a sites infinis introduit par Kimura (1969, 1971)

[1]  J. Doob Stochastic processes , 1953 .

[2]  M. Kimura The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. , 1969, Genetics.

[3]  W. Ewens The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.

[4]  W J Ewens,et al.  A note on the sampling theory for infinite alleles and infinite sites models. , 1974, Theoretical population biology.

[5]  G. A. Watterson The stationary distribution of the infinitely-many neutral alleles diffusion model , 1976 .

[6]  W. Li,et al.  Distribution of nucleotide differences between two randomly chosen cistrons in a finite population. , 1977, Genetics.

[7]  R. Griffiths Exact sampling distributions from the infinite neutral alleles model , 1979, Advances in Applied Probability.

[8]  S. Ethier,et al.  The infinitely-many-neutral-alleles diffusion model , 1981, Advances in Applied Probability.

[9]  Transient distribution of the number of segregating sites in a neutral infinite-sites model with no recombination , 1981 .

[10]  Wendell H. Fleming,et al.  Advances in Filtering and Optimal Stochastic Control , 1982 .

[11]  R. Griffiths The number of alleles and segregating sites in a sample from the infinite-alleles model , 1982, Advances in Applied Probability.

[12]  D. Dawson,et al.  Applications of duality to measure-valued diffusion processes , 1982 .

[13]  C. Strobeck Estimation of the neutral mutation rate in a finite population from DNA sequence data. , 1983, Theoretical population biology.

[14]  F. Hoppe Pólya-like urns and the Ewens' sampling formula , 1984 .

[15]  S. Ethier,et al.  The infinitely-many-alleles model with selection as a measure-valued diffusion , 1987 .

[16]  T. Kurtz Approximation of Population Processes , 1987 .