Wavelet approximation methods in image and signal compression

The material in this paper comes from various conferences given by the authors. We start with a brief survey of harmonic analysis methods in linear and non-linear approximation related to signal compression. Special emphasis is made on wavelet-based methods and some of the mathematical theory of wavelets behind them. We also present recent results of the authors concerning nonlinear approximation in sequence spaces and the validity of Jackson and Bernstein inequalities in general smoothness spaces.

[1]  J. Peetre New thoughts on Besov spaces , 1976 .

[2]  R. DeVore,et al.  Interpolation spaces and non-linear approximation , 1988 .

[3]  Lyman P. Hurd,et al.  Fractal image compression , 1993 .

[4]  G. Bourdaud Ondelettes et espaces de Besov , 1995 .

[5]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[6]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[7]  Vladimir N. Temlyakov,et al.  The best m-term approximation and greedy algorithms , 1998, Adv. Comput. Math..

[8]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[9]  S. Mallat A wavelet tour of signal processing , 1998 .

[10]  R. DeVore,et al.  Nonlinear Approximation and the Space BV(R2) , 1999 .

[11]  Przemysław Wojtaszczyk,et al.  Wavelets as unconditional bases inLp(ℝ) , 1999 .

[12]  Albert Cohen,et al.  Wavelet methods in numerical analysis , 2000 .

[13]  Gerard Kerkyacharian,et al.  Entropy, Universal Coding, Approximation, and Bases Properties , 2003 .

[14]  George Kyriazis Multilevel Characterizations of Anisotropic Function Spaces , 2004, SIAM J. Math. Anal..

[15]  Sharp Jackson and Bernstein inequalities for N-term approximation in sequence spaces with applications , 2004 .

[16]  WAVELET CHARACTERIZATIONS FOR ANISOTROPIC BESOV SPACES WITH 0 , 2004, Proceedings of the Edinburgh Mathematical Society.

[17]  R. DeVore,et al.  Nonlinear approximation and the space BV[inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="01i" /] , 1999 .