FAST TRACK PAPER: Note on rain-triggered earthquakes and their dependence on karst geology

SUMMARY Recently reported rain-triggered seismicity from three separate storms occurred exclusively in karst geology. In this paper, I discuss how the hydrogeology of karst controls rain-triggered seismicity by channeling of the watershed after intense rainfall directly into the karst network. Such channeling results in very large increases in hydraulic head, and more importantly, substantially increases the vertical stress acting on the underlying pore-elastic media. Rapid loading upon a pore-elastic media induces seismicity by increasing pore pressure at depth in a manner similar to that observed from reservoir impounding. Using a simple 1-D model of a pore-elastic medium, it is shown that the instantaneous fluid pressure increase at depth is a substantial fraction of the pressure step applied at the boundary, followed by time-dependent pore pressure increases associated with the typical linear diffusion problem. These results have implications for the change in fluid pressure necessary to trigger earthquakes, and leads to the following hypothesis to be tested: Unambiguous rain-triggered seismicity will only occur in karst regions.