On the Interior Regularity Criteria for Suitable Weak Solutions of the Magnetohydrodynamics Equations

We present new interior regularity criteria for suitable weak solutions of the magneto-hydrodynamics (MHD) equations in terms of the velocity field. The result means that the velocity field plays a more important role than the magnetic field in the local regularity theory of the MHD equations. This also gives a positive answer to the problem proposed by Kang and Lee in [J. Differential Equations, 247 (2009), pp. 2310--2330].

[1]  Interior Regularity Criteria for Suitable Weak Solutions of the Navier-Stokes Equations , 2006, math/0607114.

[2]  K. Kang,et al.  Regularity criteria of the magnetohydrodynamic equations in bounded domains or a half space , 2012 .

[3]  G. Prodi Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .

[4]  J. Serrin The initial value problem for the Navier-Stokes equations , 1963 .

[5]  J. Wolf On the boundary regularity of suitable weak solutions to the Navier-Stokes equations , 2010 .

[6]  P. Davidson An Introduction to Magnetohydrodynamics , 2001 .

[7]  J. L. Lions,et al.  Inéquations en thermoélasticité et magnétohydrodynamique , 1972 .

[8]  V. Sverák,et al.  Navier-Stokes Equations with Lower Bounds on the Pressure , 2002 .

[9]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[10]  On the local smoothness of weak solutions to the MHD system near the boundary , 2011 .

[11]  Vladimir Scheffer Boundary regularity for the Navier-Stokes equations in a half-space , 1982 .

[12]  B. Jones,et al.  The initial value problem for the Navier-Stokes equations with data in Lp , 1972 .

[13]  J. Necas,et al.  On Leray's self-similar solutions of the Navier-Stokes equations , 1996 .

[14]  Fanghua Lin,et al.  A new proof of the Caffarelli‐Kohn‐Nirenberg theorem , 1998 .

[15]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[16]  Vladimir Scheffer Partial regularity of solutions to the Navier-Stokes equations. , 1976 .

[17]  Michael Struwe,et al.  On partial regularity results for the navier‐stokes equations , 1988 .

[18]  Jiahong Wu,et al.  Regularity Criteria for the Generalized MHD Equations , 2008 .

[19]  G. Seregin Local Regularity of Suitable Weak Solutions to the Navier—Stokes Equations Near the Boundary , 2002 .

[20]  Cheng He,et al.  On the regularity criteria for weak solutions to the magnetohydrodynamic equations , 2007 .

[21]  Jihoon Lee,et al.  Some regularity criteria for the 3D incompressible magnetohydrodynamics , 2010 .

[22]  Partial regularity of solutions to the magnetohydrodynamic equations , 2008 .

[23]  H. Sohr,et al.  Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes , 1983 .

[24]  K. Kang On Boundary Regularity of the Navier–Stokes Equations , 2004 .

[25]  Zhouping Xin,et al.  Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations , 2005 .

[26]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[27]  Shuji Takahashi On interior regularity criteria for weak solutions of the navier-stokes equations , 1990 .

[28]  O. Ladyzhenskaya,et al.  On Partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier—Stokes equations , 1999 .

[29]  Zhouping Xin,et al.  On the regularity of weak solutions to the magnetohydrodynamic equations , 2005 .

[30]  Yoshikazu Giga,et al.  Abstract LP estimates for the Cauchy problem with applications to the Navier‐Stokes equations in exterior domains , 1991 .

[31]  Yong Zhou,et al.  Regularity criteria for the generalized viscous MHD equations , 2007 .

[32]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[33]  K. Kang,et al.  Interior regularity criteria for suitable weak solutions of the magnetohydrodynamic equations , 2009 .

[34]  Gradient estimation on Navier–Stokes equations , 1999 .

[35]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[36]  Luis Escauriaza,et al.  BACKWARD UNIQUENESS FOR THE HEAT OPERATOR IN A HALF-SPACE , 2004 .

[37]  B. Nicolaenko,et al.  L3,∞-solutions to the MHD equations , 2007 .