Focus on Quantum Memory

Quantum memories are essential for quantum information processing and long-distance quantum communication. The field has recently seen a lot of progress, and the present focus issue offers a glimpse of these developments, showing both experimental and theoretical results from many of the leading groups around the world. On the experimental side, it shows work on cold gases, warm vapors, rare-earth ion doped crystals and single atoms. On the theoretical side there are in-depth studies of existing memory protocols, proposals for new protocols including approaches based on quantum error correction, and proposals for new applications of quantum storage. Looking forward, we anticipate many more exciting results in this area.

[1]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[2]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[3]  C. Simon,et al.  Proposal for the creation and optical detection of spin cat states in Bose-Einstein condensates. , 2014, Physical review letters.

[4]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[5]  W. Tittel,et al.  An integrated processor for photonic quantum states using a broadband light–matter interface , 2014, 1402.0481.

[6]  N. Gisin,et al.  Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory , 2014, Nature Photonics.

[7]  J. Nunn,et al.  From photons to phonons and back: a THz optical memory in diamond. , 2013, Physical review letters.

[8]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[9]  P. Grangier,et al.  Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory. , 2013, Physical review letters.

[10]  C. Adams,et al.  All-optical quantum information processing using Rydberg gates. , 2013, Physical review letters.

[11]  R. Ricken,et al.  Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. , 2013, Physical review letters.

[12]  Matthew R. James,et al.  Analysis of the operation of gradient echo memories using a quantum input–output model , 2013 .

[13]  A. Nicolas,et al.  A quantum memory for orbital angular momentum photonic qubits , 2013, Nature Photonics.

[14]  D. Felinto,et al.  Dynamics of the reading process of a quantum memory , 2013, 1309.2235.

[15]  Christian Hubrich,et al.  Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. , 2013, Physical review letters.

[16]  E. Togan,et al.  Quantum teleportation from a propagating photon to a solid-state spin qubit , 2013, Nature Communications.

[17]  Christoph Simon,et al.  Prospective applications of optical quantum memories , 2013, 1306.6904.

[18]  G. Guo,et al.  Single-photon-level quantum image memory based on cold atomic ensembles , 2013, Nature Communications.

[19]  N. Gisin,et al.  High-bandwidth quantum memory protocol for storing single photons in rare-earth doped crystals , 2013, 1305.1863.

[20]  H. Kaviani,et al.  Quantum storage and retrieval of light by sweeping the atomic frequency , 2013, 1304.3166.

[21]  John G. Rarity,et al.  Proposal for a loophole-free Bell test based on spin–photon interactions in cavities , 2013, 1303.6522.

[22]  J. Eschner,et al.  Heralded mapping of photonic entanglement into single atoms in free space: proposal for a loophole-free Bell test , 2013, 1303.6261.

[23]  T. A. Palomaki,et al.  Coherent state transfer between itinerant microwave fields and a mechanical oscillator , 2012, Nature.

[24]  M. Schug,et al.  Photon entanglement detection by a single atom , 2013 .

[25]  P. Lett,et al.  Spatially addressable readout and erasure of an image in a gradient echo memory , 2013, 1302.4730.

[26]  Thierry Chaneliere,et al.  Securing coherence rephasing with a pair of adiabatic rapid passages , 2013, 1302.4839.

[27]  H. Riedmatten,et al.  Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory , 2013, 1301.3048.

[28]  M. Afzelius,et al.  Proposal for a coherent quantum memory for propagating microwave photons , 2013, 1301.1858.

[29]  A. Sørensen,et al.  An efficient quantum memory based on two-level atoms , 2013, 1301.0705.

[30]  E. S. Moiseev,et al.  Scalable time reversal of Raman echo quantum memory and quantum waveform conversion of light pulse , 2013, 1301.0499.

[31]  S. Kröll,et al.  Efficient quantum memory using a weakly absorbing sample. , 2013, Physical review letters.

[32]  Heng Shen,et al.  Deterministic quantum teleportation between distant atomic objects , 2012, Nature Physics.

[33]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[34]  S. Kröll,et al.  Cavity-enhanced storage—preparing for high-efficiency quantum memories , 2012, 1212.3774.

[35]  H. Mabuchi,et al.  Gauge subsystems, separability and robustness in autonomous quantum memories , 2012, 1212.3564.

[36]  Marco Barbieri,et al.  Efficient optical pumping and high optical depth in a hollow-core photonic-crystal fibre for a broadband quantum memory , 2012, 1212.0396.

[37]  P. Altin,et al.  Gradient echo memory in an ultra-high optical depth cold atomic ensemble , 2012, 1211.7171.

[38]  M. Schug,et al.  A high-rate source for single photons in a pure quantum state , 2012, 1211.5922.

[39]  Yi-Hsin Chen,et al.  Coherent optical memory with high storage efficiency and large fractional delay. , 2012, Physical review letters.

[40]  N. Sangouard,et al.  Analysis of a photon number resolving detector based on fluorescence readout of an ion Coulomb crystal quantum memory inside an optical cavity , 2012, 1209.0352.

[41]  T. Chanelière,et al.  Quantum memory with a controlled homogeneous splitting , 2012, 1208.0677.

[42]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[43]  P. Hakonen,et al.  Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator , 2012, Nature.

[44]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[45]  M. L. W. Thewalt,et al.  Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.

[46]  J. Eschner,et al.  A quantum detector for photon entanglement , 2011, 1111.1085.

[47]  Nicolas Gisin,et al.  Heralded quantum entanglement between two crystals , 2011, Nature Photonics.

[48]  J. Renes,et al.  Holonomic quantum computing in symmetry-protected ground states of spin chains , 2011, 1103.5076.

[49]  Jeongwan Haah Local stabilizer codes in three dimensions without string logical operators , 2011, 1101.1962.

[50]  B. He,et al.  Photon-photon gates in Bose-Einstein condensates. , 2010, Physical review letters.

[51]  F. Bussières,et al.  Broadband waveguide quantum memory for entangled photons , 2010, Nature.

[52]  Félix Bussières,et al.  Quantum storage of photonic entanglement in a crystal , 2010, Nature.

[53]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[54]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[55]  H. Bombin,et al.  Self-correcting quantum computers , 2009, 0907.5228.

[56]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[57]  S. A. Moiseev,et al.  Photon‐echo quantum memory in solid state systems , 2009 .

[58]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[59]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.