Quantum illumination reveals phase-shift inducing cloaking

In quantum illumination entangled light is employed to enhance the detection accuracy of an object when compared with the best classical protocol. On the other hand, cloaking is a stealth technology based on covering a target with a material deflecting the light around the object to avoid its detection. Here, we propose a quantum illumination protocol especially adapted to quantum microwave technology. This protocol seizes the phase-shift induced by some cloaking techniques, such as scattering reduction, allowing for a 3 dB improvement in the detection of a cloaked target. The method can also be employed for the detection of a phase-shift in bright environments in different frequency regimes. Finally, we study the minimal efficiency required by the photocounter for which the quantum illumination protocol still shows a gain with respect to the classical protocol.

[1]  D. Neshev,et al.  Nonlinear Metamaterials , 2006, Science.

[2]  Marco Lanzagorta,et al.  Quantum Radar , 2011, Quantum Radar.

[3]  E. Solano,et al.  Quantum teleportation of propagating quantum microwaves , 2015, 1506.06701.

[4]  Thomas M. Stace,et al.  Nonabsorbing high-efficiency counter for itinerant microwave photons , 2014, 1403.4465.

[5]  Jeffrey H. Shapiro,et al.  Optimum mixed-state discrimination for noisy entanglement-enhanced sensing , 2017, CLEO 2017.

[6]  Huanyang Chen,et al.  Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. , 2008, Physical review letters.

[7]  Seth Lloyd,et al.  Quantum illumination versus coherent-state target detection , 2009, 0902.0986.

[8]  M. Devoret,et al.  Generating entangled microwave radiation over two transmission lines. , 2012, Physical review letters.

[9]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[10]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[11]  G Brida,et al.  Experimental realization of quantum illumination. , 2013, Physical review letters.

[12]  Saikat Guha,et al.  Gaussian-state quantum-illumination receivers for target detection , 2009, 0911.0950.

[13]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[14]  T Yamamoto,et al.  Displacement of Propagating Squeezed Microwave States. , 2016, Physical review letters.

[15]  S. Tretyakov,et al.  Broadband cloaking with volumetric structures composed of two‐dimensional transmission‐line networks , 2008, 0811.3298.

[16]  E. Solano,et al.  Path entanglement of continuous-variable quantum microwaves. , 2012, Physical review letters.

[17]  Saikat Guha,et al.  Microwave quantum illumination. , 2015, Physical review letters.

[18]  Tie Jun Cui,et al.  Radar illusion via metamaterials. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  M. McCall,et al.  A spacetime cloak, or a history editor , 2011 .

[20]  E. Solano,et al.  Approaching perfect microwave photodetection in circuit QED , 2010, 1101.0016.

[21]  Barry C. Sanders,et al.  Optimal quantum measurements for phase-shift estimation in optical interferometry , 1997 .

[22]  E Solano,et al.  Quantum Estimation Methods for Quantum Illumination. , 2016, Physical review letters.

[23]  根本 正史,et al.  A New Frontier of Science and Technology: Exploring and Visualizing the Dynamics of Mind and Brain , 2011 .

[24]  S. Tretyakov,et al.  Broadband electromagnetic cloaking of long cylindrical objects. , 2009, Physical review letters.

[25]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[26]  S. Lloyd,et al.  Quantum illumination with Gaussian states. , 2008, Physical review letters.

[27]  William F. Kindel,et al.  Generation and efficient measurement of single photons from fixed-frequency superconducting qubits , 2015, 1510.00663.

[28]  Zheshen Zhang,et al.  Entanglement-enhanced sensing in a lossy and noisy environment. , 2014, Physical review letters.

[29]  Zheshen Zhang,et al.  Entanglement's benefit survives an entanglement-breaking channel. , 2013, Physical review letters.

[30]  Yuri S. Kivshar,et al.  Colloquium : Nonlinear metamaterials , 2014 .

[31]  Enrique Solano,et al.  Finite-time quantum correlations of propagating squeezed microwaves , 2017 .

[32]  Pavel A. Belov,et al.  Experimental realization of invisibility cloaking , 2015 .

[33]  Thomas M. Stace,et al.  Detecting itinerant single microwave photons , 2015, 1504.04979.

[34]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[35]  Christoph Marquardt,et al.  A robust quantum receiver for phase shift keyed signals , 2014, 1412.6242.

[36]  Pekka Alitalo,et al.  Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks , 2008, 0811.2872.

[37]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[38]  Guang-Can Guo,et al.  Quantum illumination with photon-subtracted continuous-variable entanglement , 2014 .

[39]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[40]  Henrik Kettunen,et al.  Cloaking a metal object from an electromagnetic pulse: A comparison between various cloaking techniques , 2009, 0912.3617.

[41]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[42]  Philip A. Nelson,et al.  Active Control of Sound , 1992 .

[43]  Andrea Alù,et al.  REVIEW ARTICLE: Plasmonic and metamaterial cloaking: physical mechanisms and potentials , 2008 .

[44]  William J. Wilson,et al.  Passive Microwave Remote Sensing of the Earth , 2004 .

[45]  Wei Cao,et al.  Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak , 2011, Scientific reports.

[46]  J J García-Ripoll,et al.  Microwave photon detector in circuit QED. , 2008, Physical review letters.

[47]  E Solano,et al.  Finite-time quantum entanglement in propagating squeezed microwaves , 2017, Scientific Reports.

[48]  Lu Gwei-djen,et al.  Invisible Bodies , 2018 .