Testing for unobserved heterogeneity in exponential and Weibull duration models

We examine use of the likelihood ratio (LR) statistics to test for unobserved heterogeneity in duration models, based on mixtures of exponential or Weibull distributions. We consider both the uncensored and censored duration cases. The asymptotic null distribution of the LR test statistics is not the standard chi-square, as the standard regularity conditions do not hold. Instead, there is a nuisance parameter identified only under the alternative, and a null parameter value on the boundary of parameter space, as in Cho and White (2007a). We accommodate these and provide methods delivering consistent asymptotic critical values. We conduct a number of Monte Carlo simulations, comparing the level and power of the LR test statistics to an information matrix (IM) text due to Chesher (1984) and Lagrange multiplier (LM) tests of Kiefer (1985) and Sharma (1987). Our simulations show that the LR test statistic generally outperforms the IM and LM tests. We aslo revisit the work of van den Berg and Ridder (1998) on unemployment durations and of Ghysels, Gourieroux, and Jasiak (2004)on interarrival times between stock trades, and, as it turns out, affirm their original informal inferences.

[1]  Gerard J. van den Berg,et al.  An empirical equilibrium search model of the labour market , 1998 .

[2]  Joel L. Horowitz,et al.  Semiparametric Estimation of a Proportional Hazard Model with Unobserved Heterogeneity , 1999 .

[3]  Bong Joon Yoon,et al.  A MODEL OF UNEMPLOYMENT DURATION WITH VARIABLE SEARCH INTENSITY , 1981 .

[4]  James E. Prieger,et al.  Conditional Moment Tests for Parametric Duration Models , 2000 .

[5]  J. Prieger Bootstrapping the conditional moment test for parametric duration models , 2003 .

[6]  Jiahua Chen,et al.  The likelihood ratio test for homogeneity in finite mixture models , 2001 .

[7]  D. Andrews Testing When a Parameter Is on the Boundary of the Maintained Hypothesis , 2001 .

[8]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[9]  J. Heckman,et al.  A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data , 1984 .

[10]  Joachim Grammig,et al.  A family of autoregressive conditional duration models , 2006 .

[11]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[12]  Herman J. Bierens,et al.  A consistent conditional moment test of functional form , 1990 .

[13]  H. White,et al.  Testing for a Constant Mean Function using Functional Regression , 2008 .

[14]  Bo E. Honoré Simple estimation of a duration model with unobserved heterogeneity , 1990 .

[15]  Maxwell B. Stinchcombe,et al.  CONSISTENT SPECIFICATION TESTING WITH NUISANCE PARAMETERS PRESENT ONLY UNDER THE ALTERNATIVE , 1998, Econometric Theory.

[16]  Tony Lancaster,et al.  THE COVARIANCE MATRIX OF THE INFORMATION MATRIX TEST , 1984 .

[17]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[18]  Cristian Pasarica,et al.  Testing Homogeneity in Gamma Mixture Models , 2003 .

[19]  Vladimir I. Piterbarg,et al.  Asymptotic Methods in the Theory of Gaussian Processes and Fields , 1995 .

[20]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[21]  Tony Lancaster,et al.  The Econometric Analysis of Transition Data. , 1992 .

[22]  Tony Lancaster,et al.  ECONOMETRIC METHODS FOR THE DURATION OF UNEMPLOYMENT , 1979 .

[23]  Bruce D. Meyer Unemployment Insurance and Unemployment Spells , 1988 .

[24]  Specification Diagnostics for Econometric Models of Duration , 1987 .

[25]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[26]  Eric S. Lander,et al.  Asymptotic distribution of the likelihood ratio test that a mixture of two binomials is a single binomial , 1995 .

[27]  M. R. Spiegel Mathematical handbook of formulas and tables , 1968 .

[28]  Donald W. K. Andrews,et al.  Consistent Moment Selection Procedures for Generalized Method of Moments Estimation , 1999 .

[29]  Maureen O'Hara,et al.  Time and the Process of Security Price Adjustment , 1992 .

[30]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Newton,et al.  A Rank Statistics Approach to the Consistency of a General Bootstrap , 1992 .

[32]  Y. Hochberg A sharper Bonferroni procedure for multiple tests of significance , 1988 .

[33]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[34]  Jin Seo Cho,et al.  Testing for Regime Switching , 2007 .

[35]  Maureen O'Hara,et al.  Market Microstructure Theory , 1995 .

[36]  Xiaohong Chen,et al.  MIXING AND MOMENT PROPERTIES OF VARIOUS GARCH AND STOCHASTIC VOLATILITY MODELS , 2002, Econometric Theory.

[37]  Barr Rosenberg,et al.  The Analysis of a Cross-Section of Time Series by Stochastically Convergent Parameter Regression , 1973 .

[38]  J. Horowitz Bootstrap-based critical values for the information matrix test , 1994 .

[39]  Andrew Chesher,et al.  Testing for Neglected Heterogeneity , 1984 .

[40]  D. Cox Regression Models and Life-Tables , 1972 .

[41]  D. Andrews Estimation When a Parameter is on a Boundary , 1999 .

[42]  R. Olshen,et al.  Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer , 1985 .

[43]  Karl Mosler,et al.  Theory & Methods: Testing for Homogeneity in an Exponential Mixture Model , 2001 .

[44]  Eric Ghysels,et al.  Stochastic volatility duration models , 2004 .

[45]  N. Shephard Stochastic volatility models , 2010 .

[46]  K. Singh,et al.  On the Asymptotic Accuracy of Efron's Bootstrap , 1981 .

[47]  Robert F. Engle,et al.  The Econometrics of Ultra-High Frequency Data , 1996 .

[48]  Gerard J. van den Berg,et al.  The Unobserved Heterogeneity Distribution in Duration Analysis , 2007 .

[49]  W. Rudin Principles of mathematical analysis , 1964 .

[50]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[51]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[52]  J. Cho,et al.  Testing for Unobserved Heterogeneity in Exponential and Weibull Duration Models , 2009 .

[53]  E. Gassiat,et al.  Testing the order of a model using locally conic parametrization : population mixtures and stationary ARMA processes , 1999 .

[54]  Jin Seo Cho,et al.  Generalized runs tests for the IID hypothesis , 2011 .

[55]  Nicholas M. Kiefer,et al.  Specification diagnostics based on Laguerre alternatives for econometric models of duration , 1985 .

[56]  J. Kalbfleisch,et al.  A modified likelihood ratio test for homogeneity in finite mixture models , 2001 .

[57]  T. Ferguson BAYESIAN DENSITY ESTIMATION BY MIXTURES OF NORMAL DISTRIBUTIONS , 1983 .

[58]  Robert F. Engle,et al.  Advances in Econometrics: The Kalman filter: applications to forecasting and rational-expectations models , 1987 .

[59]  N. Kiefer Economic Duration Data and Hazard Functions , 1988 .

[60]  Stephen Nickell,et al.  Estimating the Probability of Leaving Unemployment , 1979 .

[61]  Tony Lancaster,et al.  Generalised residuals and heterogeneous duration models: With applications to the Weilbull model , 1985 .