Modal Logics, Description Logics and Arithmetic Reasoning
暂无分享,去创建一个
[1] Jean-Pierre Bourguignon,et al. Mathematische Annalen , 1893 .
[2] W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .
[3] M. Stone. The theory of representations for Boolean algebras , 1936 .
[4] Marvin Minsky,et al. A framework for representing knowledge , 1974 .
[5] Ronald J. Brachman,et al. An Overview of the KL-ONE Knowledge Representation System , 1985, Cogn. Sci..
[6] Bernhard Nebel,et al. Reasoning and Revision in Hybrid Representation Systems , 1990, Lecture Notes in Computer Science.
[7] Klaus Schild,et al. A Correspondence Theory for Terminological Logics: Preliminary Report , 1991, IJCAI.
[8] Peter F. Patel-Schneider,et al. Living wiht Classic: When and How to Use a KL-ONE-Like Language , 1991, Principles of Semantic Networks.
[9] Gert Smolka,et al. Attributive Concept Descriptions with Complements , 1991, Artif. Intell..
[10] Werner Nutt,et al. The Complexity of Concept Languages , 1997, KR.
[11] Franz Baader,et al. KRIS: Knowledge Representation and Inference System , 1991, SGAR.
[12] Franz Baader,et al. A Scheme for Integrating Concrete Domains into Concept Languages , 1991, IJCAI.
[13] Bernhard Nebel,et al. Terminological Cycles: Semantics and Computational Properties , 1991, Principles of Semantic Networks.
[14] Dov M. Gabbay,et al. Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.
[15] Diego Calvanese,et al. Making object-oriented schemas more expressive , 1994, PODS '94.
[16] Diego Calvanese,et al. A Unified Framework for Class-Based Representation Formalisms , 1994, KR.
[17] Robert M. MacGregor,et al. A Description Classifier for the Predicate Calculus , 1994, AAAI.
[18] Klaus Schild,et al. Terminological Cycles and the Propositional µ-Calculus , 1994, KR.
[19] Diego Calvanese,et al. Finite Model Reasoning in Description Logics , 1996, KR.
[20] Franz Baader,et al. Description Logics with Symbolic Number Restrictions , 1996, ECAI.
[21] Michael Zakharyaschev,et al. Modal Logic , 1997, Oxford logic guides.
[22] H. J. Ohlbach,et al. How to Augment a Formal System with a Boolean Algebra Component , 1998 .
[23] Ian Horrocks,et al. A Description Logic with Transitive and Inverse Roles and Role Hierarchies , 1999, J. Log. Comput..
[24] Franz Baader,et al. Description Logics with Concrete Domains and Aggregation , 1998, ECAI.