Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles

[1]  J. Dionne,et al.  Reconstructing solute-induced phase transformations within individual nanocrystals. , 2016, Nature materials.

[2]  Harald Giessen,et al.  Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. , 2016, Nature materials.

[3]  P Zapol,et al.  Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles , 2015, Nature Communications.

[4]  V. Zhdanov,et al.  Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. , 2015, Nature materials.

[5]  Sang Chul Lee,et al.  Effects of Particle Size, Electronic Connectivity, and Incoherent Nanoscale Domains on the Sequence of Lithiation in LiFePO4 Porous Electrodes , 2015, Advanced materials.

[6]  Daniel A. Cogswell,et al.  Dichotomy in the Lithiation Pathway of Ellipsoidal and Platelet LiFePO4 Particles Revealed through Nanoscale Operando State‐of‐Charge Imaging , 2015 .

[7]  S. Itoh,et al.  Change in the crystalline structure during the phase transition of the palladium-hydrogen system. , 2015, Physical chemistry chemical physics : PCCP.

[8]  Y. S. Meng,et al.  Topological defect dynamics in operando battery nanoparticles , 2015, Science.

[9]  J. Dionne,et al.  In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. , 2014, Nature materials.

[10]  C. Volkert,et al.  Surface dislocation nucleation controlled deformation of Au nanowires , 2014 .

[11]  Jörg Maser,et al.  Nonequilibrium structural dynamics of nanoparticles in LiNi(1/2)Mn(3/2)O4 cathode under operando conditions. , 2014, Nano letters.

[12]  Kenichi Kato,et al.  Hydrogen storage in Pd nanocrystals covered with a metal-organic framework. , 2014, Nature materials.

[13]  Kenichi Kato,et al.  Shape-dependent hydrogen-storage properties in Pd nanocrystals: which does hydrogen prefer, octahedron (111) or cube (100)? , 2014, Journal of the American Chemical Society.

[14]  Karena W. Chapman,et al.  Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes , 2014, Science.

[15]  Marco Stampanoni,et al.  Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries , 2013, Science.

[16]  Lester O. Hedges,et al.  Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. , 2013, Nature materials.

[17]  Daniel A. Cogswell,et al.  Theory of coherent nucleation in phase-separating nanoparticles. , 2013, Nano letters.

[18]  Kyle R Fenton,et al.  Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. , 2013, Nano letters.

[19]  N. Dasgupta,et al.  Spatial variation of available electronic excitations within individual quantum dots. , 2013, Nano letters.

[20]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[21]  T. Shegai,et al.  Hydride Formation in Single Palladium and Magnesium Nanoparticles Studied By Nanoplasmonic Dark-Field Scattering Spectroscopy , 2011, Advanced materials.

[22]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[23]  Ling Zhang,et al.  Shape-controlled synthesis of single-crystalline palladium nanocrystals. , 2010, ACS nano.

[24]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[25]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[26]  Peter Hall,et al.  Energy-storage technologies and electricity generation , 2008 .

[27]  Guobao Xu,et al.  Seed-Mediated Growth of Nearly Monodisperse Palladium Nanocubes with Controllable Sizes , 2008 .

[28]  P. Ferreira,et al.  On the nucleation of partial dislocations in nanoparticles , 2008 .

[29]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[30]  M. Doeff,et al.  TEM Study of Fracturing in Spherical and Plate-like LiFePO4 Particles , 2008 .

[31]  Renu Sharma,et al.  Environmental (S)TEM Studies of Gas–Liquid–Solid Interactions under Reaction Conditions , 2008 .

[32]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[33]  Hsiao-Ying Shadow Huang,et al.  Strain Accommodation during Phase Transformations in Olivine‐Based Cathodes as a Materials Selection Criterion for High‐Power Rechargeable Batteries , 2007 .

[34]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[35]  R. Griessen,et al.  Temperature dependence of magnetoresistance and Hall effect in Mg2NiHx films , 2004 .

[36]  Astrid Pundt,et al.  Hydrogen in Nano‐sized Metals , 2004 .

[37]  R. Černý,et al.  Hydrogen cycling induced degradation in LaNi5-type materials , 2002 .

[38]  Anton Van der Ven,et al.  Phase transformations and volume changes in spinel LixMn2O4 , 2000 .

[39]  Young-Il Jang,et al.  TEM Study of Electrochemical Cycling‐Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries , 1999 .

[40]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[41]  A. San-Martin,et al.  The H-Pd (hydrogen-palladium) System , 1994 .

[42]  L. Brown,et al.  Characterization of palladium hydride films by electron energy loss spectroscopy and electron diffraction , 1988 .

[43]  D. Murphy,et al.  The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4 , 1984 .

[44]  G. Weatherly,et al.  An in situ electron microscope study of precipitation in palladium-hydrogen alloys , 1979 .

[45]  E. Seymour,et al.  NMR Measurement of Hydrogen Diffusion inβ-Palladium Hydride , 1975 .

[46]  K. M. Zinn,et al.  Transmission electron microscopy. , 1973, International ophthalmology clinics.

[47]  L. W. Mckeehan,et al.  The Crystal Structures of the System Palladium-Hydrogen , 1923 .

[48]  R. Sinclair,et al.  A Brief History of Controlled Atmosphere Transmission Electron Microscopy , 2016 .

[49]  Tuncay Alan,et al.  In-situ TEM on (de)hydrogenation of Pd at 0.5-4.5 bar hydrogen pressure and 20-400°C. , 2012, Ultramicroscopy.

[50]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[51]  J. Fuggle,et al.  Electronic structure and surface kinetics of palladium hydride studied with x-ray photoelectron spectroscopy and electron-energy-loss spectroscopy , 1982 .

[52]  G. Alefeld,et al.  Hydrogen in Metals II , 1978 .