The computational complexity of the criticality problems in a network with interval activity times

Abstract The paper analyzes the criticality in a network with interval activities duration times. A natural generalization of the criticality notion (for a path, an activity and an event) for the case of network with interval activity duration times is given. The computation complexity of five problems linked to the introduced criticality notion is presented.

[1]  S. Chanas,et al.  THE USE OF FUZZY VARIABLES IN PERT , 1981 .

[2]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[3]  Pawel Zielinski,et al.  Critical path analysis in the network with fuzzy activity times , 2001, Fuzzy Sets Syst..

[4]  Jerzy Kamburowski,et al.  An upper bound on the expected completion time of PERT networks , 1985 .

[5]  J. Kamburowski Normally Distributed Activity Durations in PERT Networks , 1985 .

[6]  S. H. Nasution Fuzzy Critical Path Method , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[7]  David S. Johnson,et al.  `` Strong '' NP-Completeness Results: Motivation, Examples, and Implications , 1978, JACM.

[8]  Donald B. Johnson,et al.  Lower Bounds for Selection in X + Y and Other Multisets , 1978, JACM.

[9]  Ronald R. Yager,et al.  The personalization of security selection: An application of fuzzy set theory , 1981 .

[10]  F. Lootsma Stochastic and Fuzzy Pert , 1989 .

[11]  Salah E. Elmaghraby On criticality and sensitivity in activity networks , 2000, Eur. J. Oper. Res..

[12]  F A Lootsma,et al.  THEORY AND METHODOLOGY STOCHASTIC AND FUZZY PERT , 1989 .

[13]  Igor Gazdik Fuzzy-Network Planning - FNET , 1983, IEEE Transactions on Reliability.

[14]  D. Malcolm,et al.  Application of a Technique for Research and Development Program Evaluation , 1959 .

[15]  James E. Kelley,et al.  Critical-Path Planning and Scheduling: Mathematical Basis , 1961 .

[16]  Heinrich Rommelfanger Network analysis and information flow in fuzzy environment , 1994 .

[17]  H. Prade Using fuzzy set theory in a scheduling problem: A case study , 1979 .

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .