Leading order integrability conditions for differential-difference equations

Abstract A necessary condition for the existence of conserved densities, ρ, and fluxes of a differential-difference equation which depend on q shifts, for q sufficiently large, is presented. This condition depends on the eigenvalues of the leading terms in the differential-difference equation. It also gives, explicitly, the leading integrability conditions on the density in terms of second derivatives of ρ.

[1]  Neil Genzlinger A. and Q , 2006 .

[2]  Michael D. Colagrosso,et al.  Continuous and Discrete Homotopy Operators with Applications in Integrability Testing , 2005, nlin/0501037.

[3]  D. Levi,et al.  Integrability Conditions for n and t Dependent Dynamical Lattice Equations , 2004 .

[4]  M. Hickman,et al.  Computation of densities and fluxes of nonlinear differential‐difference equations , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Y. Suris The Problem of Integrable Discretization: Hamiltonian Approach , 2003 .

[6]  W. Xue,et al.  Infinitely many conservation laws of two Blaszak–Marciniak three-field lattice hierarchies , 2002 .

[7]  R. Sahadevan,et al.  Similarity reduction, generalized symmetries and integrability of Belov–Chaltikian and Blaszak–Marciniak lattice equations , 2001 .

[8]  G. Teschl Jacobi Operators and Completely Integrable Nonlinear Lattices , 1999 .

[9]  S. I. Svinolupov,et al.  Multi-component Volterra and Toda type integrable equations , 1999 .

[10]  Willy Hereman,et al.  Computation of conservation laws for nonlinear lattices , 1998, solv-int/9801023.

[11]  K. Marciniak,et al.  R-matrix approach to lattice integrable systems , 1994 .

[12]  Alexander A.Belov,et al.  Lattice analogues of W-algebras and Classical Integrable Equations , 1993, hep-th/9303166.

[13]  A. Shabat,et al.  Lattice representations of integrable systems , 1988 .

[14]  O. Bogoyavlenskii SOME CONSTRUCTIONS OF INTEGRABLE DYNAMICAL SYSTEMS , 1988 .

[15]  戸田 盛和 Theory of nonlinear lattices , 1981 .

[16]  R. Hirota,et al.  N -Soliton Solutions of Nonlinear Network Equations Describing a Volterra System , 1976 .

[17]  Mark Kac,et al.  On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices , 1975 .