A Universal operon Predictor for prokaryotic genomes

Identification of operons at the genome scale of prokaryotic organisms represents a key step in deciphering of their transcriptional regulation machinery, biological pathways, and networks. While numerous computational methods have been shown to be effective in predicting operons for well-studied organisms such as Escherichia coli K12 and Bacillus subtilis 168, these methods generally do not generalize well to genomes other than the ones used to train the methods, or closely related genomes because they rely on organism-specific information. Several methods have been explored to address this problem through utilizing only genomic structural information conserved across multiple organisms, but they all suffer from the issue of low prediction sensitivity. In this paper, we report a novel operon prediction method that is applicable to any prokaryotic genome with high prediction accuracy. The key idea of the method is to predict operons through identification of conserved gene clusters across multiple genomes and through deriving a key parameter relevant to the distribution of intergenic distances in genomes. We have implemented this method using a graph-theoretic approach, to calculate a set of maximum gene clusters in the target genome that are conserved across multiple reference genomes. Our computational results have shown that this method has higher prediction sensitivity as well as specificity than most of the published methods. We have carried out a preliminary study on operons unique to archaea and bacteria, respectively, and derived a number of interesting new insights about operons between these two kingdoms. The software and predicted operons of 365 prokaryotic genomes are available at http://csbl.bmb.uga.edu/~dongsheng/UNIPOP.

[1]  W Hengstenberg,et al.  Identification of the genes for the lactose-specific components of the phosphotransferase system in the lac operon of Staphylococcus aureus. , 1987, The Journal of biological chemistry.

[2]  Å. Andersen,et al.  A Mycobacterium tuberculosis gene cluster encoding proteins of a phosphate transporter homologous to the Escherichia coli Pst system. , 1996, Gene.

[3]  B. Berger-Bächi,et al.  Glutamine synthetase and heteroresistance in methicillin-resistant Staphylococcus aureus. , 1996, Microbial drug resistance.

[4]  H. Labischinski,et al.  Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target? , 1996, Microbial Drug Resistance.

[5]  I. Kullik,et al.  The alternative sigma factor σB in Staphylococcus aureus: regulation of the sigB operon in response to growth phase and heat shock , 1997, Archives of Microbiology.

[6]  Tohru Mizushima,et al.  A Putative Multisubunit Na+/H+ Antiporter fromStaphylococcus aureus , 1998, Journal of bacteriology.

[7]  T. Ohta,et al.  Chromosome‐Determined Zinc‐Responsible Operon czr in Staphylococcus aureus Strain 912 , 1999, Microbiology and immunology.

[8]  B. Berger-Bächi,et al.  glmM Operon and Methicillin-ResistantglmM Suppressor Mutants in Staphylococcus aureus , 1999, Antimicrobial Agents and Chemotherapy.

[9]  T. Ohta,et al.  The hsp Operons Are Repressed by the hrc37 of the hsp70 Operon in Staphylococcus aureus , 1999, Microbiology and immunology.

[10]  E. Koonin,et al.  Conserved domains in DNA repair proteins and evolution of repair systems. , 1999, Nucleic acids research.

[11]  Kenta Nakai,et al.  Modeling and predicting transcriptional units of <$O_SSF>Escherichia coli<$C_SSF>genes using hidden Markov models , 1999, Bioinform..

[12]  S. Sau,et al.  Promoter Analysis of the cap8 Operon, Involved in Type 8 Capsular Polysaccharide Production in Staphylococcus aureus , 1999, Journal of bacteriology.

[13]  David Page,et al.  A Probabilistic Learning Approach to Whole-Genome Operon Prediction , 2000, ISMB.

[14]  Michael Hecker,et al.  Characterization of the ςB Regulon inStaphylococcus aureus , 2000, Journal of bacteriology.

[15]  S. Imai,et al.  Transposon-mediated insertional mutagenesis of the D-alanyl-lipoteichoic acid (dlt) operon raises methicillin resistance in Staphylococcus aureus. , 2000, Research in microbiology.

[16]  Kenneth W. Bayles,et al.  The Staphylococcus aureus lrgAB Operon Modulates Murein Hydrolase Activity and Penicillin Tolerance , 2000, Journal of bacteriology.

[17]  Philip J. Hill,et al.  Molecular Cloning and Analysis of a Putative Siderophore ABC Transporter from Staphylococcus aureus , 2000, Infection and Immunity.

[18]  Temple F. Smith,et al.  Operons in Escherichia coli: genomic analyses and predictions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Brandenberger,et al.  Inactivation of a novel three-cistronic operon tcaR-tcaA-tcaB increases teicoplanin resistance in Staphylococcus aureus. , 2000, Biochimica et biophysica acta.

[20]  Rachel Schreiber,et al.  Analysis of Transcription of theStaphylococcus aureus Aerobic Class Ib and Anaerobic Class III Ribonucleotide Reductase Genes in Response to Oxygen , 2001, Journal of bacteriology.

[21]  Kenneth W. Bayles,et al.  Molecular Characterization of a NovelStaphylococcus aureus Serine Protease Operon , 2001, Infection and Immunity.

[22]  Michael Otto,et al.  Identification of the sigB Operon inStaphylococcus epidermidis: Construction and Characterization of a sigB Deletion Mutant , 2001, Infection and Immunity.

[23]  M. Bischoff,et al.  Influence of a Functional sigB Operon on the Global Regulators sar and agr inStaphylococcus aureus , 2001, Journal of bacteriology.

[24]  S. Salzberg,et al.  Prediction of operons in microbial genomes. , 2001, Nucleic acids research.

[25]  R. Jayaswal,et al.  Molecular Characterization of the Iron-Hydroxamate Uptake System in Staphylococcus aureus , 2001, Applied and Environmental Microbiology.

[26]  A. Hughes,et al.  Pattern and timing of gene duplication in animal genomes. , 2001, Genome research.

[27]  J R Brown,et al.  Identification, cloning, and expression of a functional phenylalanyl-tRNA synthetase (pheRS) from Staphylococcus aureus. , 2001, Protein expression and purification.

[28]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[29]  S. Foster,et al.  In Staphylococcus aureus, Fur Is an Interactive Regulator with PerR, Contributes to Virulence, and Is Necessary for Oxidative Stress Resistance through Positive Regulation of Catalase and Iron Homeostasis , 2001, Journal of bacteriology.

[30]  Jean Thierry-Mieg,et al.  A global analysis of Caenorhabditis elegans operons , 2002, Nature.

[31]  Olivier Poch,et al.  Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. , 2002, Nucleic acids research.

[32]  Chiara Sabatti,et al.  Co-expression pattern from DNA microarray experiments as a tool for operon prediction , 2002, Nucleic Acids Res..

[33]  J. Szustakowski,et al.  Computational identification of operons in microbial genomes. , 2002, Genome research.

[34]  M. F. White Archaeal DNA repair: paradigms and puzzles. , 2003, Biochemical Society transactions.

[35]  David Page,et al.  A Bayesian Network Approach to Operon Prediction , 2003, Bioinform..

[36]  David Botstein,et al.  The Stanford Microarray Database: data access and quality assessment tools , 2003, Nucleic Acids Res..

[37]  E V Koonin,et al.  A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. , 2004, Nucleic acids research.

[38]  Tao Jiang,et al.  Operon prediction by comparative genomics: an application to the Synechococcus sp. WH8102 genome. , 2004, Nucleic acids research.

[39]  Ken F. Jarrell,et al.  Recent Advances in the Structure and Assembly of the Archaeal Flagellum , 2004, Journal of Molecular Microbiology and Biotechnology.

[40]  Julio Collado-Vides,et al.  RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12 , 2004, Nucleic Acids Res..

[41]  Samuel Karlin,et al.  Genomic and proteomic comparisons between bacterial and archaeal genomes and related comparisons with the yeast and fly genomes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  K. N. Ramachandran Nair,et al.  A fuzzy guided genetic algorithm for operon prediction , 2005, Bioinform..

[43]  Katherine H. Huang,et al.  A novel method for accurate operon predictions in all sequenced prokaryotes , 2005, Nucleic acids research.

[44]  Satoru Miyano,et al.  Prediction of Transcriptional Terminators in Bacillus subtilis and Related Species , 2005, PLoS Comput. Biol..

[45]  S. C. Rison,et al.  A universally applicable method of operon map prediction on minimally annotated genomes using conserved genomic context , 2005, Nucleic acids research.

[46]  Jaya Sivaswami Tyagi,et al.  Transcription and autoregulation of the Rv3134c-devR-devS operon of Mycobacterium tuberculosis. , 2005, Microbiology.

[47]  Vassilis Mersinias,et al.  Analysis of gene expression in operons of Streptomyces coelicolor , 2006, Genome Biology.

[48]  Jeremy Buhler,et al.  Operon prediction without a training set , 2005, Bioinform..

[49]  Sarath Chandra Janga,et al.  The distinctive signatures of promoter regions and operon junctions across prokaryotes , 2006, Nucleic acids research.

[50]  Ken F. Jarrell,et al.  Archaeal Flagella, Bacterial Flagella and Type IV Pili: A Comparison of Genes and Posttranslational Modifications , 2006, Journal of Molecular Microbiology and Biotechnology.

[51]  Patrick Deschavanne,et al.  Horizontal transfer of a virulence operon to the ancestor of Mycobacterium tuberculosis. , 2006, Molecular biology and evolution.

[52]  N. Casali,et al.  Regulation of the Mycobacterium tuberculosis mce1 Operon , 2006, Journal of bacteriology.

[53]  Susumu Goto,et al.  ODB: a database of operons accumulating known operons across multiple genomes , 2005, Nucleic Acids Res..

[54]  Ying Xu,et al.  Operon prediction in Pyrococcus furiosus , 2006 .

[55]  Ying Xu,et al.  Operon prediction using both genome-specific and general genomic information , 2006, Nucleic acids research.