A Signal Processor's Tour Feature

The theory and methods of signal processing are becoming increasingly important in molecular biology. Digital filtering techniques, transform domain methods, and Markov models have played important roles in gene identification, biological sequence analysis, and alignment. This paper contains a brief review of molecular biology, followed by a review of the applications of signal processing theory. This includes the problem of gene finding using digital filtering, and the use of transform domain methods in the study of protein binding spots. The relatively new topic of noncoding genes, and the associated problem of identifying ncRNA buried in DNA sequences are also described. This includes a discussion of hidden Markov models and context free grammars. Several new directions in genomic signal processing are briefly outlined in the end.

[1]  J. Steitz,et al.  The expanding universe of noncoding RNAs. , 2006, Cold Spring Harbor symposia on quantitative biology.

[2]  C. Glover,et al.  Gene expression profiling for hematopoietic cell culture , 2006 .

[3]  A. Antoniou,et al.  Identification and location of hot spots in proteins using the short-time discrete Fourier transform , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[4]  P.D. Cristea,et al.  Genomic signal processing , 2004, 7th Seminar on Neural Network Applications in Electrical Engineering, 2004. NEUREL 2004. 2004.

[5]  Gregory D. Peterson,et al.  Engineering in the biological substrate: information processing in genetic circuits , 2004, Proceedings of the IEEE.

[6]  P. P. Vaidyanathan,et al.  IDENTIFICATION AND LOCATION OF HOT SPOTS IN PROTEINS USING THE SHORT-TIME FOURIER TRANSFORM , 2004 .

[7]  Fabrice Labeau,et al.  Discrete Time Signal Processing , 2004 .

[8]  Dimitris Anastassiou,et al.  Spectrogram Analysis of Genomes , 2004, EURASIP J. Adv. Signal Process..

[9]  P. P. Vaidyanathan,et al.  The role of signal-processing concepts in genomics and proteomics , 2004, J. Frankl. Inst..

[10]  W Wayt Gibbs Can cells be generic? , 2003, Scientific American.

[11]  W. Wayt Gibbs The unseen genome: beyond DNA. , 2003, Scientific American.

[12]  W. Wayt Gibbs,et al.  The unseen genome: gems among the junk. , 2003, Scientific American.

[13]  N. Lau,et al.  Censors of the genome. , 2003, Scientific American.

[14]  T. Speed,et al.  Biological Sequence Analysis , 1998 .

[15]  M. L. Simpson,et al.  Frequency domain analysis of noise in autoregulated gene circuits , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Botstein,et al.  Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Jack Parker Computing with DNA , 2003, EMBO reports.

[18]  Qiang Fang,et al.  Investigation of the structural and functional relationships of oncogene proteins , 2002, Proc. IEEE.

[19]  Rocco Casagrande Technology against terror. , 2002, Scientific American.

[20]  S. Eddy Computational Genomics of Noncoding RNA Genes , 2002, Cell.

[21]  Robert Clarke,et al.  Iterative normalization of cDNA microarray data , 2002, IEEE Transactions on Information Technology in Biomedicine.

[22]  Denise Gorse,et al.  Wavelet transforms for the characterization and detection of repeating motifs. , 2002, Journal of molecular biology.

[23]  Biological dark matter: Newfound RNA suggests a hidden complexity inside cells , 2002 .

[24]  Xiao-Ping Zhang,et al.  ITERATIVE DECONVOLUTION FOR AUTOMATIC BASECALLING OF THE DNA ELECTROPHORESIS TIME SERIES , 2002 .

[25]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[26]  P.P. Vaidyanathan,et al.  Digital filters for gene prediction applications , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[27]  P. P. Vaidyanathan,et al.  GENE AND EXON PREDICTION USING ALLPASS-BASED FILTERS , 2002 .

[28]  S. Eddy Non–coding RNA genes and the modern RNA world , 2001, Nature Reviews Genetics.

[29]  M P Orsi,et al.  On Synthetic Life , 2001, The Linacre quarterly.

[30]  S. Eddy,et al.  Computational identification of noncoding RNAs in E. coli by comparative genomics , 2001, Current Biology.

[31]  S. K. Moore Making chips to probe genes , 2001 .

[32]  B. Wang,et al.  Correlation property of length sequences based on global structure of the complete genome. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Pasupathy,et al.  Optimal structure for automatic processing of DNA sequences , 1999, IEEE Transactions on Biomedical Engineering.

[35]  Maria de Sousa Vieira,et al.  Statistics of DNA sequences: a low-frequency analysis. , 1999, cond-mat/9905074.

[36]  L. Guarente,et al.  Molecular Biology of Aging , 1999, Cell.

[37]  D. Botstein,et al.  Exploring the new world of the genome with DNA microarrays , 1999, Nature Genetics.

[38]  P. Goodfellow,et al.  DNA microarrays in drug discovery and development , 1999, Nature Genetics.

[39]  E. Lander Array of hope , 1999, Nature Genetics.

[40]  L.J. Thomas,et al.  Filter matrix estimation in automated DNA sequencing , 1998, IEEE Transactions on Biomedical Engineering.

[41]  Hanspeter Herzel,et al.  Interpreting correlations in biosequences , 1998 .

[42]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[43]  Simon Kasif,et al.  Computational methods in molecular biology , 1998 .

[44]  S. Salzberg,et al.  Microbial gene identification using interpolated Markov models. , 1998, Nucleic acids research.

[45]  S. Tiwari,et al.  Prediction of probable genes by Fourier analysis of genomic sequences , 1997, Comput. Appl. Biosci..

[46]  Wentian Li,et al.  The Study of Correlation Structures of DNA Sequences: A Critical Review , 1997, Comput. Chem..

[47]  Frederick Jelinek,et al.  Statistical methods for speech recognition , 1997 .

[48]  Jeffrey M. Hausdorff,et al.  Multiscaled randomness: A possible source of 1/f noise in biology. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[50]  James W. Fickett,et al.  The Gene Identification Problem: An Overview for Developers , 1995, Comput. Chem..

[51]  I. Cosic Macromolecular bioactivity: is it resonant interaction between macromolecules?-theory and applications , 1994, IEEE Transactions on Biomedical Engineering.

[52]  D. Haussler,et al.  A hidden Markov model that finds genes in E. coli DNA. , 1994, Nucleic acids research.

[53]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[54]  R. Voss,et al.  Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. , 1992, Physical review letters.

[55]  C. Peng,et al.  Long-range correlations in nucleotide sequences , 1992, Nature.

[56]  Li,et al.  Expansion-modification systems: A model for spatial 1/f spectra. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[57]  A. Brack The origin of life on Earth , 1991 .

[58]  Gregory W. Wornell,et al.  A Karhunen-Loève-like expansion for 1/f processes via wavelets , 1990, IEEE Trans. Inf. Theory.

[59]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[60]  J. Alemán,et al.  Author's address: , 1988 .

[61]  M. Lindauer [The origin of life on this earth]. , 1985, Krankenpflege Journal.

[62]  S. Mitra,et al.  Interpolated finite impulse response filters , 1984 .

[63]  A. Papoulis Systems and transforms with applications in optics , 1981 .

[64]  E. Trifonov,et al.  The pitch of chromatin DNA is reflected in its nucleotide sequence. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[66]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[67]  F. Crick,et al.  The structure of DNA. , 1953, Cold Spring Harbor symposia on quantitative biology.